Arctium lappa L. (Asteraceae) occupies a prominent position in the ethnotherapeutics practices. The herb is known to contain a number of bioactive metabolites, which have immense therapeutic value. The objective of our present investigation was to estimate the variation of metabolites in different parts and phonological stages of A. lappa. This investigation has been done using a high-performance thin-layer chromatography technique. The present analysis reveals that the root (vegetative stages) holds the significantly high content of triterpenoids (betulinic acid, oleanolic acid, and lupeol), in comparison to the reproductive stage.
Y.S. Chan , L.N. Cheng, J.H. Wu, E. Chan, Y.W. Kwan, S.M. Lee, G.P. Leung, P.H. Yu, S.W. Chan, A review of pharmacological effect of Arctium lappa (burdock), Inflammopharmacology 9 (2011) 1–10.
B.S. Yu , X.P. Yan, J.Y. Xiong, Simultaneous determination of chlorogenic acid, forsythin and arctiin in Chinese traditional medicines preparation by reversed phase HPLC, Chem. Pharm. Bull. 5 (2003) 421–424.
L. Yang , S. Lin, T. Yang, Synthesis of anti-HIV activity of dibenzylbutyrolactone lignans, Bioorg. Med. Chem Lett. 6 (1996) 941–944.
C.A. Dombrádi , S. Földeák, Screening report on the antitumor activity of purified Arctium lappa extracts, Tumori 52 (1966) 173–175.
F. Chen , A. Wu, C. Chen, The influence of different treatments on the free radical scavenging activity of burdock and variations of its active components, Food Chem. 86 (2004) 479–484.
C. Jianfeng , L. Chaopin, Z.X. Pengying, T.H. Cao, B. Yungui, C. Kaoshan, Antidiabetic effect of burdock (Arctium lappa L.) root ethanolic extract on streptozotocin-induced diabetic rats, Afr. J. Biotechnol. 11 (2012) 9079–9085.
C.C. Lin , J.M. Lin, J.J. Yang, S.C. Chuang, T. Ujiie, Anti-inflammatory and radical scavenge effects of Arctium lappa, Am. J. Chin. Med. 24 (1996) 127–137.
S.C. Lin , T.C. Chung, C.C. Lin, T.H. Ueng, Y. Lin, S.Y. Lin, L.Y. Wang, Hepatoprotective effects of Arctium lappa on carbon tetrachloride- and acetaminophen induced liver damage, Am. J. Chin. Med. 28 (2000) 163–173.
C. Forni , F. Facchiano, M. Bartoli, S. Pieretti, A. Facchiano, D.D. Arcangelo, S. Norelli, G. Valle, R. Nisini, S. Beninati, C. Tabolacci, R.N. Jadeja, Beneficial role of phytochemicals on oxidative stress and age-related diseases, BioMed Res. Int. 2019 (2019), article ID 8748253, 16 pages.
R.J. Thoppil , A. Bishayee, Terpenoids as potential chemopreventive and therapeutic agents in liver cancer, World J. Hepatol. 3 (2011) 228–249.
C. Çırak , J. Radušienė, V. Janulis, L. Ivanauskas, Secondary metabolites in Hypericum perfoliatum: variation among plant parts and phenological stages, Bot. Helv. 117 (2007) 29–36.
G.M. Cragg , D.J. Newman, Natural product drug discovery in the next millennium, Pharm. Biol. 39 Suppl. 1 (2001) 8–17.
J.T. James , R. Meyer, I.A. Dubery, Characterisation of two phenotypes of Centella asiatica in Southern Africa through the composition of four triterpenoids in callus, cell suspensions and leaves, Plant Cell Tiss. Organ Cult. 94 (2008) 91–99.
A. Ghasemzadeh , A. Nasiri, H.Z. Jaafar, A. Baghdadi, I. Ahmad, Changes in phytochemical synthesis, chalcone synthase activity and pharmaceutical qualities of Sabah snake grass (Clinacanthus nutans L.) in relation to plant age, Molecules 19 (1998) 17632–17648.
H. Behn , U. Schurr, A. Ulbrich, G. Noga, Development-dependent UV-B responses in red oak leaf lettuce (Lactuca sativa L.): Physiological mechanisms and significance for hardening, Eur. J. Hortic. Sci. 76 (2011) 33–37.
C. Valares Masa , T. Sosa Díaz, J.C. Alías Gallego, N. Chaves Lobón, Quantitative variation of flavonoids and diterpenes in leaves and stems of Cistus ladanifer L. at different ages, Molecules 21 (2016) 275.