Összefoglaló. A thoracoabdominalis aortakirekesztés okozta gerincvelő ischemia súlyos neurológiai következményeit számos klinikai és kísérleti tanulmány bizonyítja. E nehezen kiszámítható, súlyos szövődmény megelőzésének érdekében régi törekvés megfelelő intra- és posztoperatív monitorizálás kifejlesztése, ami előre jelzi a gerincvelő-funkció romlását, illetve a kialakuló celluláris károsodást. A legelterjedtebb, a klinikai gyakorlatban széles körben alkalmazott megoldás a gerincvelői kiváltott motoros potenciál (MEP) folyamatos ellenőrzése. Ritkábban alkalmazott – bár ígéretes – eljárás a biokémiai változások nyomon követése, ami a sejtszintű károsodás markereit használja fel az ischemia okozta változások felismerésére.
Korábbi dolgozatunkban kutyákon végzett kísérleteink azon eredményeit ismertettük, amelyekben a 60 perces thoracoabdominalis aortakirekesztés okozta neurológiai változások és a perfúzió adatainak összefüggéseit tárgyaltuk. Jelen tanulmányunkban a gerincvelői motoros (MEP) és szenzoros (SEP) kiváltott potenciálok változásait vizsgáljuk a neurológiai végállapot vonatkozásában. Megállapítottuk, hogy SEP változásai a neurológiai károsodás mértékével értékelhető összefüggést nem mutatnak. A MEP-amplitúdó és -latencia értékei biztonsággal jelzik a fenyegető gerincvelő ischemiát. A neurológiai deficit mélységét (Tarlov 2,1,0) a MEP-értékek változásai numerikusan nem értékelhetően követik.
Summary. Severe neurological complications of the thoracoabdominal aortic clamping were published in numerous clinical and experimental studies. These hardly predictable, devastating consequences demanded to develop a monitoring system which might detect impending level of spinal cord ischemia in time – in order to introduce or enhance protective procedures and prevent permanent neurological deficit. The most widely used monitoring in clinical practice is the continuous surveillance of the motor evoked potentials (MEP) during and after thoracoabdominal aortic clamping. Much less used, but promising opportunity is to control the metabolic changes and cellular integrity utilizing specific markers like liquor lactate and neuron specific enolase (NSE) etc. In our earlier study we published data of our canine experiment related to coherencies between neurological outcome and specific perfusion of the spinal cord during and after one hour thoracoabdominal aortic clamping. In the present paper we investigate the behavior of motor evoked (MEP) and sensory evoked (SEP) potentials related to neurological changes. We conclude the behavior of SEP values hardly correlate with the neurologic outcome, meanwhile decrease of MEP amplitude provides reliable signal for developing spinal cord ischemia. We could not confirm a numeric correlation of these data and the level of the final neurologic outcome.
Crawford ES, Mizrahi EM, Hess KR, Coselli JS, Safi HS, Patel VM: The impact of distal aortic perfusion and somatosensory evoked potential monitoring on prevention of paraplegia after aortic aneurysm operations. J Thorac Cardiovasc Surg 1988; 95: 357–367.
Melissano G, Bertolio L, Mascia D, Rinaldi E, Del Carro U, Nardelli P, Chiesa R: Spinal cord ischemia is multifactorial: What is the best protocol? J Cardiovasc Surg (Torino) 2 016; 57(2): 191–201.
Cunningham JN Jr, Laschinger JC, Spencer FC: Monitoring of somatosensory evoked potentials during surgical procedures on the thoracoabdominal aorta IV. Clinical observations and results. J Thorac Cardiovasc Surg. 1987; 94(2): 275–285.
Laschinger JC, Cunningham JN, Cooper MM, Baumann MM, Spencer FC: Monitoring of somatosensory evoked potentials during surgical procedures on the thoraco-abdominal aorta. I. Relationship of aortic cross-clamp duration, changes in somatosensory evoked potentials, and incidence of neurologic dyfunction. J Thorac Cardiovasc Surg 1987; 94: 260–265.
Levy WJ: Spinal evoked potentials from the motor tracts. J Neurosurgery 1983; 58: 38–44.
Konrad PE, Tacker WA, Levy WJ, Reedy DF, Cook JR, Geddes ME: Motor evoked potentials in the dog: effects of global ischemia on spinal cord and peripheral nerve signals. Neurosurgery 1987; 20: 117–124.
Caulkins SE, Purinton PT, Oliver Jr. JE: Arterial supply to the spinal cord of dogs and cats. Am J Vet Res 19 89; 50(3): 425–430.
Kieffer E, Richard T, Chiras J, Godet G, Cormier E: P reoperative spinal cord arteriography in aneurysmal disease of the descending thoracic and thoracoabdominal aorta: Preliminary results in 45 patients . Ann Vasc Surg 19 89; 3(1): 34–46.
Svenson LG, Patel V, Robinson MF, Ueda T, Roehm Jr. JOF, Crawford ES: Influence of preservation of intraoperatively identified spinal cord blood supply on spinal motor evoked potentials and paraplegia after aortic surgery. J Vasc Surg 1991; 13(3): 355–365.
Szelenyi A, Langer D, Kothbauer K, De Camargo AB, Flamm ES, Deletis V: Monitoring of muscle motor evoked potentials during cerebral aneurysm surgery: intra-operative changes and postoperative outcome. J Neurosurg 2006; 105: 675‒681 .
Lowell RC, Gloviczki P, Bergman RT, Stanson AW, Dzsinich C, Bower TC, Cherry Jr. KJ: Failure of selective shunting to intercostal arteries to prevent spinal cord ischemia during experimental thoracaoabdominal aortic occlusion. Int Angiol 1992; 11(4): 281–288.
Jacobs MJ, Mess W, Mochta B, Nijenhuis RJ, Statius van Eps RG, Schurink GWH: The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg 2006; 43(2): 239–246.
Banga PV , Oderich GS, Reis de Souza L, Hofer J, Cazares Gonzales M, Pulido JM, Cha S, Gloviczki P: Neuromonitoring, cerebrospinal fluid drainage, and selective use of iliofemoral conduits to minimize risk of spinal cord injury during complex endovascular aortic repair. J Endovasc Ther 20 16; 23(1): 139–149.
Greiner A, Mess WH, Schmidli J, Debus ES, Grommes J, Dick F, Jacobs MJ: Cyber medicine enables remote neuromonitoring during aortic surgery. J Vasc Surg 2012; 55(5): 1227–1232.
Fok M, Jafarzadeh F, Sancho E, Abello D, Rimmer L, Howard C, Kennedy T, Hammoud I, Bashir M: Is there any benefit of neuromonitoring during descending and thoracoabdominal aortic anneurysm repair? Innovation 2015; 10(5): 342–348.
Yoshitani K, Matsui K, Kawaguchi M, Kawamata M, Kakinohana M, Kato S, Hasuwa K, Yamakage M, Yoshikawa J, Nishiwaki K, Aoyama T, Inagaki Y, Yamasaki K, Matsumoto M, Ishida K, Yamashita A, Seo K, Kokumoto S, Hayashi H, Tanaka Y, Tanaka S, Uchino H, Kakinuma T, Yamada Y, Mori Y, Izumi S, Nishimura K, Nakai M, Ohnishi Y: Clinical utility of intraoperative motor-evoked potential monitoring to prevent postoperative spinal cord injury in thoracic and thoracoabdominal aneurysm repair: An audit of the Japanese association of spinal cord protection in Aortic Surgery Database. Anesth Analg 2018; 126(3): 763–768.
Strauch JT, Lauten A, Spielvogel D, Rinke S, Zhangh N, Weisz D, Bodian CA, Griepp RB: Mild hypothermia protects the spinal cord from ischemic injury in a chronic porcine model. European Journal of Cardio-Thoracic Surgery 2004; 25(5): 708–715.
Meylaerts SA, De Haan D, Kalkman CJ, Lips J, De Mol BA, Jacobs MJ: The influence of regional spinal cord hypothermia on transcranial myogenic motor-evoked potential monitoring and the efficacy of spinal cord ischemia detection. J Thorac Cardiovasc Surg 1999; 118(6): 1038–1045. 19 Dzsinich Cs, Nagy G, Selmeci L, Sepa G, Fazekas L, Kékesi V, Juhász-Nagy S: Effect of regional hypothermia on cerebrospinal fluid (CSF) parameters during thoracoabdominal aortic clamping in dogs. Magy Seb 2005 ; 3: 79–84.
Nagy G, Dzsinich C, Selmeci L, Sepa G, Dzsinich M, Kékesi V, Juhász-Nagy S: Biochemical alterations in cerebrospinal fluid during thoracoabdominal aortic cross-clamping in dogs. Ann Vasc Surg. 2002; 16(4): 436–441.
Harky A, Fok M, Fraser H, Howard C, Rimmer L, Bashir M: Could cerebrospinal fluid biomarkers offer better predictive value for spinal cord ischemia than current neuromonitoring techniques during thoracoabdominal aortic aneurysm repair. A systematic review. Braz J Cardiovasc Surg 2019; 34(4): 464–471. http://doi.org/10.21470/1678-9741-2018-0375.