Authors:
Rui Chi Institute of Mathematics, Dalian University of Technology Dalian 116024, P.R. China

Search for other papers by Rui Chi in
Current site
Google Scholar
PubMed
Close
,
Shuyan Ding Institute of Mathematics, Dalian University of Technology Dalian 116024, P.R. China

Search for other papers by Shuyan Ding in
Current site
Google Scholar
PubMed
Close
,
Weidong Gao Department of Computer Science and Technology Center for Combinatorics, Nankai University Tianjin, 300071, P.R. China

Search for other papers by Weidong Gao in
Current site
Google Scholar
PubMed
Close
,
Alfred Geroldinger Institut für Mathematik Institut für Mathematik, Karl-Franzensuniversität Heinrichstrasse 36, 8010 Graz, Austria

Search for other papers by Alfred Geroldinger in
Current site
Google Scholar
PubMed
Close
, and
Wolfgang A. Schmid Institut für Mathematik, Karl-Franzensuniversität Heinrichstrasse 36, 8010 Graz, Austria

Search for other papers by Wolfgang A. Schmid in
Current site
Google Scholar
PubMed
Close
Restricted access

Summary For a finite abelian group G, we investigate the invariant  s(G) (resp.  the invariant  s0(G)) which is defined as the smallest integer l ? N such that every sequence S in G of length |S| = l has a subsequence T with sum zero and length |T|= exp(G) (resp. length |T|=0 mod exp(G)).

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2023 1 0 0
May 2023 0 0 0
Jun 2023 0 0 0
Jul 2023 2 0 0
Aug 2023 3 0 0
Sep 2023 0 0 0
Oct 2023 0 0 0