Summary Let Fq be a finite field with q elements. We consider formal Laurent series of Fq -coefficients with their continued fraction expansions by Fq -polynomials. We prove some arithmetic properties for almost every formal Laurent series with respect to the Haar measure. We construct a group extension of the non-archimedean continued fraction transformation and show its ergodicity. Then we get some results as an application of the individual ergodic theorem. We also discuss the convergence rate for limit behaviors.