Authors:
N. Baccar Université de Monastir, Faculté des Sciences de Monastir, Département de Mathématiques Avenue de l'environnement, 5000, Monastir, Tunisie Avenue de l'environnement, 5000, Monastir, Tunisie

Search for other papers by N. Baccar in
Current site
Google Scholar
PubMed
Close
,
F. Ben Sa?d Université de Monastir, Faculté des Sciences de Monastir, Département de Mathématiques Avenue de l'environnement, 5000, Monastir, Tunisie Avenue de l'environnement, 5000, Monastir, Tunisie

Search for other papers by F. Ben Sa?d in
Current site
Google Scholar
PubMed
Close
, and
A. Zekraoui Université de Monastir, Faculté des Sciences de Monastir, Département de Mathématiques Avenue de l'environnement, 5000, Monastir, Tunisie Avenue de l'environnement, 5000, Monastir, Tunisie

Search for other papers by A. Zekraoui in
Current site
Google Scholar
PubMed
Close
Restricted access

Summary  

For PF2[z] with P(0)=1 and deg(P)≧ 1, let A =A(P) be the unique subset of  N (cf. [9]) such that Σn0 p(A,n)zn  ≡ P(z) mod 2, where p(A,n) is the number of partitions of n with parts in A. To determine the elements of the set A, it is important to consider the sequence σ(A,n) = Σ d|n, dAd, namely, the periodicity of the sequences (σ(A,2kn) mod 2k+1)n1 for all k ≧ 0 which was proved in [3]. In this paper, the values of such sequences will be given in terms of orbits. Moreover, a formula to σ(A,2kn) mod 2k+1 will be established, from which it will be shown that the weight σ(A1,2kzi) mod 2k+1    on the orbit \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $z_i$ \end{document} is moved on some other orbit zj when A1 is replaced by A2 with A1= A(P1) and A2= A(P2) P1 and P2 being irreducible in F2[z]  of the same odd order.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2024 0 0 0
Mar 2024 1 1 1
Apr 2024 1 0 0
May 2024 0 0 0
Jun 2024 3 0 0
Jul 2024 1 0 0
Aug 2024 0 0 0