Authors:
S. Romaguera Universidad Politécnica de Valencia E.T.S.I. Caminos, Departamento de Matemática Aplicada, IMPA-UPV 46071 Valencia Spain 46071 Valencia Spain

Search for other papers by S. Romaguera in
Current site
Google Scholar
PubMed
Close
,
A. Sapena Universidad Politécnica de Valencia Escuela Politécnica Superior de Gandia, IMPA-UPV 46730 Grau de Gandia, Valencia Spain 46730 Grau de Gandia, Valencia Spain

Search for other papers by A. Sapena in
Current site
Google Scholar
PubMed
Close
, and
O. Valero Universidad de las Islas Baleares Departamento de Ciencias Matemáticas e Informática 07122 Palma de Mallorca, Baleares Spain 07122 Palma de Mallorca, Baleares Spain

Search for other papers by O. Valero in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

V. Gregori and S. Romaguera [17] obtained an example of a fuzzy metric space (in the sense of A. George and P. Veeramani) that is not completable, i.e. it is not isometric to a dense subspace of any complete fuzzy metric space; therefore, and contrary to the classical case, there exist quiet fuzzy quasi-metric spaces that are not bicompletable neither D-completable, via (quasi-)isometries. In this paper we show that, nevertheless, it is possible to obtain solutions to the problem of completion of fuzzy quasi-metric spaces by using quasi-uniform isomorphisms instead of (quasi-)isometries. Such solutions are deduced from a general method, given here, to obtain extension properties of fuzzy quasi-metric spaces from the corresponding ones of the classical theory of quasi-uniform and quasi-metric spaces.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 9 0 0
Sep 2024 10 0 0
Oct 2024 10 0 0
Nov 2024 9 0 0
Dec 2024 1 0 0
Jan 2025 10 0 0
Feb 2025 0 0 0