Authors:
José de la Pena UNAM. Cd. Universitaria Instituto de Matemáticas México 04510 D.F.

Search for other papers by José de la Pena in
Current site
Google Scholar
PubMed
Close
and
Juan Rada Universidad de los Andes Departamento de Matemáticas, Facultad de Ciencias Mérida Venezuela

Search for other papers by Juan Rada in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Given a graph G with characteristic polynomial ϕ(t), we consider the ML-decomposition ϕ(t) = q1(t)q2(t)2 ... qm(t)m, where each qi(t) is an integral polynomial and the roots of ϕ(t) with multiplicity j are exactly the roots of qj(t). We give an algorithm to construct the polynomials qi(t) and describe some relations of their coefficients with other combinatorial invariants of G. In particular, we get new bounds for the energy E(G) =
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop \sum \limits_{i = 1}^n$$ \end{document}
i| of G, where λ1, λ2, ..., λn are the eigenvalues of G (with multiplicity). Most of the results are proved for the more general situation of a Hermitian matrix whose characteristic polynomial has integral coefficients.
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 4 0 0
Sep 2024 7 0 0
Oct 2024 9 0 0
Nov 2024 14 0 0
Dec 2024 6 0 0
Jan 2025 1 0 0
Feb 2025 0 0 0