Author:
U. Goginava Tbilisi State University Department of Mechanics and Mathematics Chavchavadze str. 1 Tbilisi 0128 Georgia Chavchavadze str. 1 Tbilisi 0128 Georgia

Search for other papers by U. Goginava in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

The main aim of this paper is to prove that the maximal operator
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sigma _0^* : = \mathop {\sup }\limits_n \left| {\sigma _{n,n} } \right|$$ \end{document}
of the Fejr mean of the double Walsh-Fourier series is not bounded from the Hardy space H1/2 to the space weak-L1/2.
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 3 0 0
May 2024 9 0 0
Jun 2024 2 0 0
Jul 2024 7 0 0
Aug 2024 6 0 0
Sep 2024 13 0 0
Oct 2024 1 0 0