Authors: M. Evans 1 and P. Humke
View More View Less
  • 1 Washington and Lee University Department of Mathematics Lexington VA 24450 USA
  • 2 St. Olaf College Department of Mathematics Northfield MN 55057 USA
Restricted access

Abstract  

The purpose of this paper is to discuss a first-return integration process which yields the Lebesgue integral of a bounded measurable function f: IR defined on a compact interval I. The process itself, which has a Riemann flavor, uses the given function f and a sequence of partitions whose norms tend to 0. The “first-return” of a given sequence

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\bar x$$ \end{document}
is used to tag the intervals from the partitions. The main result of the paper is that under rather general circumstances this first return integration process yields the Lebesgue integral of the given function f for almost every sequence
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\bar x$$ \end{document}
.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2020 1 0 0
Sep 2020 0 0 0
Oct 2020 0 0 0
Nov 2020 0 0 0
Dec 2020 0 0 0
Jan 2021 0 0 0
Feb 2021 0 0 0