Author:
Z. Buczolich Eötvös Loránd University Department of Analysis Pázmány Péter Sétány 1/c 1117 Budapest Hungary

Search for other papers by Z. Buczolich in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

We construct a sequence (nk) such that nk + 1nk → ∞ and for any ergodic dynamical system (X, Σ, �, T) and f ε L1(�) the averages
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\lim _{N \to \infty } (1/N)\sum\nolimits_{k = 1}^N {f(T^{n_k } x)}$$ \end{document}
converge to Xfd� for � almost every x. Since the above sequence is of zero Banach density this disproves a conjecture of J. Rosenblatt and M. Wierdl about the nonexistence of such sequences.
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 5 0 0
Jul 2024 1 0 0
Aug 2024 5 0 0
Sep 2024 8 0 0
Oct 2024 18 0 0
Nov 2024 20 0 0
Dec 2024 0 0 0