Author:
K. Halupczok Albert-Ludwigs-Universität Mathematisches Institut Eckerstrasse 1 D-79104 Freiburg Germany

Search for other papers by K. Halupczok in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

We show that for every fixed A > 0 and θ > 0 there is a ϑ = ϑ(A, θ) > 0 with the following property. Let n be odd and sufficiently large, and let Q1 = Q2:= n1/2(log n)ϑ and Q3:= (log n)θ. Then for all q3Q3, all reduced residues a3 mod q3, almost all q2Q2, all admissible residues a2 mod q2, almost all q1Q1 and all admissible residues a1 mod q1, there exists a representation n = p1 + p2 + p3 with primes piai (qi), i = 1, 2, 3.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 6 0 0
Jan 2024 2 1 2
Feb 2024 1 1 0
Mar 2024 0 0 0
Apr 2024 1 0 0
May 2024 8 0 0
Jun 2024 0 0 0