View More View Less
  • 1 Koç University Department of Mathematics 34450 Sariyer, Istanbul Turkey
  • 2 University of Rochester Department of Mathematics Rochester New York 14627 USA
  • 3 University of Illinois at Urbana-Champaign Department of Mathematics 273 Altgeld Hall, MC-382, 1409 W. Green Street Urbana Illinois 61801 USA
Restricted access

Abstract  

We study the irrational factor function I(n) introduced by Atanassov and defined by

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$I(n) = \prod\nolimits_{\nu = 1}^k {p_\nu ^{1/\alpha _\nu } }$$ \end{document}
, where
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$n = \prod\nolimits_{\nu = 1}^k {p_\nu ^{\alpha _\nu } }$$ \end{document}
is the prime factorization of n. We show that the sequence {G(n)/n}n≧1, where G(n) = Πν=1nI(ν)1/n, is convergent; this answers a question of Panaitopol. We also establish asymptotic formulas for averages of the function I(n).

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2020 1 0 0
Sep 2020 0 0 0
Oct 2020 0 0 0
Nov 2020 0 1 0
Dec 2020 0 0 0
Jan 2021 0 0 0
Feb 2021 0 0 0