Authors: H. Bell 1 and A. Klein 2
View More View Less
  • 1 Brock University Dept. of Mathematics St. Catharines ON Canada L2S 3A1
  • 2 Tel Aviv University School of Mathematical Sciences Tel Aviv Israel 69978
Restricted access

Abstract  

A ring R is called almost-quasi-commutative if for each x, yR there exist nonzero relatively prime integers j = j(x, y) and k = k(x, y) and a non-negative integer n = n(x, y) such that jxy = k(yx)n. We establish some general properties of such rings, study commutativity of almost-quasi-commutative R, and consider several examples.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 0 0
Jul 2020 0 0 0
Aug 2020 1 0 0
Sep 2020 0 0 0
Oct 2020 0 0 0
Nov 2020 0 0 0
Dec 2020 0 0 0