In this paper definitions for “bounded variation”, “subsequences”, “Pringsheim limit points”, and “stretchings” of a double sequence are presented. Using these definitions and the notion of regularity for four dimensional matrices, the following two questions will be answered. First, if there exists a four dimensional regular matrix A such that Ay = Σk,l=1,1∞∞am,n,k,lyk,l is of bounded variation (BV) for every subsequence y of x, does it necessarily follow that x ∈ BV? Second, if there exists a four dimensional regular matrix A such that Ay ∈ BV for all stretchings y of x, does it necessarily follow that x ∈ BV? Also some natural implications and variations of the two Tauberian questions above will be presented.