Authors:
G. Lü Shandong University Department of Mathematics Jinan 250100 China

Search for other papers by G. Lü in
Current site
PubMed
Close
and
H. Sun Shandong University Department of Mathematics Jinan 250100 China

Search for other papers by H. Sun in
Current site
PubMed
Close
Restricted access

## Abstract

We sharpen Hua’s theorem with five squares of primes by proving that every sufficiently large integer N congruent to 5 modulo 24 can be written in the form
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$N = p_1^2 + p_2^2 + p_3^2 + p_4^2 + p_5^2$$ \end{document}
with p1
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$N^{\tfrac{{49}} {{288}}}$$ \end{document}
.
• Collapse
• Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder's
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Springer Nature Switzerland AG
Publisher's
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Feb 2024 0 0 0
Mar 2024 3 0 0
Apr 2024 4 0 0
May 2024 1 0 0
Jun 2024 2 0 0
Jul 2024 0 0 0
Aug 2024 0 0 0

Author:

Author:

Author:

Author:

Author: