Author:
M. Behboodi

Search for other papers by M. Behboodi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Let M be a left R-module. In this paper a generalization of the notion of m-system set of rings to modules is given. Then for a submodule N of M, we define
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sqrt[p]{N}$$ \end{document}
:= { m ε M: every m-system containing m meets N}. It is shown that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sqrt[p]{N}$$ \end{document}
is the intersection of all prime submodules of M containing N. We define radR(M) =
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sqrt[p]{{(0)}}$$ \end{document}
. This is called Baer-McCoy radical or prime radical of M. It is shown that if M is an Artinian module over a PI-ring (or an FBN-ring) R, then M/radR(M) is a Noetherian R-module. Also, if M is a Noetherian module over a PI-ring (or an FBN-ring) R such that every prime submodule of M is virtually maximal, then M/radR(M) is an Artinian R-module. This yields if M is an Artinian module over a PI-ring R, then either radR(M) = M or radR(M) = ∩i=1n
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{P}_i M$$ \end{document}
for some maximal ideals
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{P}_1 , \ldots ,\mathcal{P}_n$$ \end{document}
of R. Also, Baer’s lower nilradical of M [denoted by Nil* (RM)] is defined to be the set of all strongly nilpotent elements of M. It is shown that, for any projective R-module M, radR(M) = Nil*(RM) and, for any module M over a left Artinian ring R, radR(M) = Nil*(RM) = Rad(M) = Jac(R)M.
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 6 2 0
Feb 2024 3 0 0
Mar 2024 2 0 0
Apr 2024 7 0 0
May 2024 14 0 0
Jun 2024 4 0 0
Jul 2024 0 0 0