View More View Less
  • 1 Department of Integrated Arts and Science, Okinawa National College of Technology, Nago, Okinawa, 905-2192 Japan
  • 2 Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602 Japan
Restricted access

Abstract  

We shall investigate several properties of the integral

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\int_1^\infty {t^{ - \theta } \Delta _k \left( t \right) log^j t dt}$$ \end{document}
with a natural number k, a non-negative integer j and a complex variable θ, where Δk(x) is the error term in the divisor problem of Dirichlet and Piltz. The main purpose of this paper is to apply the “elementary methods” and the “elementary formulas” to derive convergence properties and explicit representations of this integral with respect to θ for k = 2.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 0 0 0
Nov 2020 0 0 0
Dec 2020 0 0 0
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0