View More View Less
  • 1 Department of Mathematical Sciences, University of Memphis, Memphis, TN, 38152, USA
  • | 2 Department of Mathematics, Towson University, 7800 York Road, Towson, MD, 21252, USA
Restricted access

Abstract

A classical additive basis question is Waring’s problem. It has been extended to integer polynomial and non-integer power sequences. In this paper, we will consider a wider class of functions, namely functions from a Hardy field, and show that they are asymptotic bases.

  • [1] Arkhipov, G. I., Zhitkov, A. N. 1984 On Waring’s problem with non-integer degrees Izv. Akad. Nauk SSSR 48 11381150 (in Russian).

  • [2] Boshernitzan, Michael 1994 Uniform distribution and Hardy fields J. Analyse Math. 62 225240 .

  • [3] Boshernitzan, Michael, Kolesnik, Grigori, Quas, Anthony, Wierdl, Máté 2005 Ergodic averaging sequences J. Anal. Math. 95 63103 .

  • [4] Deshouillers, J.-M. 1973 Problème de Waring avec exposants non entiers Bull. Soc. Math. France 101 285295.

  • [5] Erdős, P., Graham, R. L. 1980 On bases with an exact order Acta Arith. 37 201207.

  • [6] Ford, K. B. 2000 Waring’s problem with polynomial summands J. London Math. Soc., (2) 61 671680 .

  • [7] Gelfond, A. O., Linnik, Yu. V. 1965 Elementary Methods in the Analytic Theory of Numbers Rand McNally & Co. Chicago.

  • [8] Iwaniec, H., Kowalski, E. 2004 Analytic Number Theory American Mathematical Society Providence.

  • [9] Nash, J. C. M., Nathanson, M. B. 1985 Cofinite subsets of asymptotic bases for the positive integers J. Number Theory 20 363372 .

  • [10] Segal, B. I., Waring’s theorem for powers with fractional and irrational exponents, Trudy Mat. Inst. Steklov (1933), 7386 (in Russian).

    • Search Google Scholar
    • Export Citation
  • [11] Corput van der, J. G. 1929 Neue zahlentheoretische Abschätzungen II Math. Zeitschrift 29 397426 .

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2021 0 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0
Dec 2021 0 0 0
Jan 2022 1 0 0
Feb 2022 0 0 0