View More View Less
  • 1 Department of Analysis, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
Restricted access

Abstract

In a Freud-type weighted (w) space, introducing another weight (v) with infinitely many roots, we give a complete and minimal system with respect to vw, by deleting infinitely many elements from the original orthonormal system with respect to w. The construction of the conjugate system implies an interpolation problem at infinitely many nodes. Besides the existence, we give some convergence properties of the solution.

  • [1] Banach, S. 1955 Théorie des Opérations Lináires 23 Chelsea Publ. Co. New York.

  • [2] Boas, R. P., Pollard, H. 1948 The multiplicative completion of set of functions Bull. Amer. Math. Soc. 54 518522 .

  • [3] Gröchenig, K., Rzesztonik, Z. and Strohmer, T., Quantitative estimates for the finite section method, http://arxiv.org/abs/arXiv:math/0610588v1 [math.FA] 19 Oct 2006.

    • Search Google Scholar
    • Export Citation
  • [4] Horváth, Á. P. 2007 Abel summation in Hermite-type weighted spaces with singularities East J. Approx. 13 357385.

  • [5] Horváth, Á. P. and Kazarian, K. S., The Dirichlet problem in weighted norm (manuscript).

  • [6] Kazarian, K. S. 1987 Summability of generalized Fourier series and Dirichlet’s problem in Lp(dμ) and weighted Hp-spaces (p>1) Analysis Math. 13 173197 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [7] Kazarian, K. S. 1978 On the multiplicative completion of some incomplete orthonormal systems to bases in Lp, 1≤p<∞ Analysis Math. 4 37 . (Russian).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [8] Kazarian, K. S., Zink, R. E. 1997 Some ramifications of a theorem of Boas and Pollard concerning the completition of a set of functions in L2 Trans. Amer. Math. Soc. 349 43674383 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [9] Levin, A. L., Lubinsky, D. S. 1990 L Markov and Bernstein inequalities for Freud weights SIAM J. Math. Anal. 21 10651082 .

  • [10] Levin, A. L., Lubinsky, D. S. 1992 Christoffel functions, orthogonal polynomials, and Nevai’s conjecture for Freud weights Constr. Approx. 3 463535 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [11] Lubinsky, D. S., Sidi, A. 2007 Biorthogonal polynomials and numerical integration formulas for infinite ntervals J. Num. Analysis, Industrial and Appl. Math. 2 118.

    • Search Google Scholar
    • Export Citation
  • [12] Máté, L. 1976 Functional Analysis Műszaki Könyvkiadó Budapest (in Hungarian).

  • [13] Mhaskar, H. N. 1990 Bounds for certain Freud-type orthogonal polynomials J. Approx. Theory 63 238254 .

  • [14] Mhaskar, H. N., Saff, E. B. 1985 Where does the sup-norm of a weighted polynomial live? Constr. Aprox. 1 7191 .

  • [15] Mostafazadeh, A., Mehri-Dehnavi, H. 2009 Spectral singularities, biorthonormal systems and a two-parameter family of complex point interactions J. Phys. A: Math. Theor. 42 125303.

    • Search Google Scholar
    • Export Citation
  • [16] Muckenhoupt, B. 1972 Weighted norm inequalities for the Hardy maximal function Trans. Amer. Math. Soc. 165 207226.

  • [17] Natanson, I. P. 1952 Constructive Theory of Functions Akadémiai Kiadó Budapest (in Hungarian).

  • [18] Price, J. J., Zink, R. E. 1965 On sets of functions that can be multiplicatively completed Ann. of Math. 82 139145 .

  • [19] Rosenblum, M. 1962 Summability of Fourier series inA Lp(dμ) Trans. Amer. Math. Soc. 105 3242.

  • [20] Szabados, J. 2002 Inequalities for polynomials with weights having infinitely many zeros on the real line Advanced Probl. in Constr. Approx., Int. Ser. of Numer. Math. 142 223236.

    • Search Google Scholar
    • Export Citation
  • [21] Szabados, J. 1997 Weighted Lagrange and Hermite–Fejér interpolation on the real line J. Inequalities and Applications 1 99123 .

  • [22] Riesz, F. 1913 D’équations Linéaires Gauthier-Villars Paris.

  • [23] Talalyan, A. A. 1960 The representation of measurable functions by series Uspekhi Math. Nauk 15 77142 (in Russian).

  • [24] Tanaka, T. 2006 J. Phys. A: Math. Gen. 39 77577761 .

  • [25] Tay, B. A., Petrosky, T. 2008 Biorthonormal eigenbasis of a Markovian master equation for the quantum Brownian motion J. Math. Phys. 49 113301 .

  • [26] Toeplitz, O. 1909 Über die Auflösung unendlich vieler linearer Gleichungen mit unendlich vielen Unbekannten Rendiconti Circ. Mat. di Palermo XXVIII 88 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [27] Vidal-Sanz, J. M. 2005 Pointwise universal consistency of nonparametric density estimators Bernoulli 11 971985 .

  • [28] Zayed, A. I. 2000 Pointwise convergence of a class of non-orthogonal wavelet expansions Proc. Amer. Math. Soc. 128 36293637 .

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0