Author: Zhixin Liu 1
View More View Less
  • 1 School of Mathematics, Shandong University, Ji’nan 250100, P. R. China
Restricted access

Abstract

Let pi be prime numbers. In this paper, it is proved that for any integer k≧5, with at most exceptions, all positive even integers up to N can be expressed in the form . This improves the result for some c>0 due to Lu and Shan [12], and it is a generalization for a series of results of Ren and Tsang [15], [16] and Bauer [1–4] for the problem in the form . This method can also be used for some other similar forms.

  • [1] Bauer, C. 1998 On a problem of the Goldbach–Waring type Acta Math. Sinica, New Series 14 223234 .

  • [2] Bauer, C. 2001 An improvement on a theorem of the Goldbach–Waring type Rocky Mountain J. Math. 31 11511170 .

  • [3] Bauer, C. 2004 A remark on a theorem of the Goldbach Waring type Studia Sci. Math. Hungar. 41 309324.

  • [4] Bauer, C. 2008 A Goldbach–Waring problem for unequal powers of primes Rocky Mountain J. Math. 38 10731090 .

  • [5] Choi, S., Kumchev, A. 2006 Mean values of Drichlet polynomials and application to linear equations with prime variables Acta Arith. 123 125142 .

  • [6] Cook, R. 1979 On sums of powers of integers J. Number Theory 4 516528 .

  • [7] Gallagher, P. X. 1970 A large sieve density estimate near σ=1 Invent. Math. 11 329339 .

  • [8] Hua, L. K. 1957 Additive Theory of Prime Numbers Science Press Beijing English Version, Amer. Math. Soc. (Rhode Island, 1965).

  • [9] Huxley, N. M. 1975 Large values of Dirichlet polynomials III Acta Arith. 26 435444.

  • [10] Liu, J. Y., Liu, M. C. 2000 The exceptional set in the four prime squares problem Illinois J. Math. 44 272293.

  • [11] Kumchev, A. 2006 On Weyl sums over primes and almost primes Michigan Math. J. 54 243268 .

  • [12] Lu, M. G. and Shan, Z., A problem of Waring–Goldbach type, J. China Univ. Sci. Tech., Suppl. I (1982), 18 (in Chinese).

  • [13] Prachar, K. 1953 Über ein Problem vom Waring–Goldbach’schen Typ Monatsh. Math. 57 6674 .

  • [14] Prachar, K. 1978 Primzahlverteilung Springer Verlag Berlin.

  • [15] Ren, X. M., Tsang, Kai-Man 2007 Waring–Goldbach problem for unlike powers Acta Math. Sinica, English Series (2) 23 265280 .

  • [16] Ren, X. M., Tsang, Kai-Man 2007 Waring–Goldbach problem for unlike powers (II) Acta Math. Sinica (Chinese Series) 50 175182.

  • [17] Roth, K. F. 1951 A problem in additive number theory Proc. London Math. Soc. 53 381395 .

  • [18] Thanigasalam, K. 1974 On certain sequences of integers Trans. Amer. Math. Soc. 200 199205 .

  • [19] Titchmarsh, E. C. 1986 The Theory of the Riemann Zeta-Function 2 Clarendon Press Oxford.

  • [20] Vinogradov, I. M. 1954 Elements of Number Theory Dover Publications New York.

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)