View More View Less
  • 1 School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
Restricted access

Abstract

We give a new upper bound of Barban–Davenport–Halberstam type for twins of k-free numbers in arithmetic progressions.

  • [1] Brüdern, J., Granville, A., Perelli, A., Vaughan, R. C., Wooley, T. D. 1998 On the exponential sum over k-free numbers Phil. Trans. R. Soc. London A 356 739761 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2] Brüdern, J., Perelli, A., Wooley, T. D. 2000 Twins of k-free numbers and their exponential sum Michigan Math. J. 47 173190 .

  • [3] Estermann, T. 1930 On the representations of a number as the sum of two products Proc. London Math. Soc., (2) 31 123133 .

  • [4] Meng, Z. Z. 2006 Some new results on k-free numbers J. Number Theory 121 4566 .

  • [5] Pan, C. D., Pan, C. B. 1997 The Foundation of Analytic Number Theory Science Press Beijing (in Chinese).

  • [6] Titchmarsh, E. C. 1952 The Theory of Functions Oxford University Press Oxford.

  • [7] Titchmarsh, E. C. 1986 The Theory of the Riemann Zeta-Function 2 Oxford University Press Oxford revised by D. R. Heath-Brown.

  • [8] Vaughan, R. C. 1997 The Hardy–Littlewood Method 2 Cambridge Tracts in Mathematics 125 Cambridge University Press Cambridge .

  • [9] Vaughan, R. C. 2005 A variance for k-free numbers in arithmetic progressions Proc. London Math. Soc., (3) 91 573597 .

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 1 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0