Authors:
Z. Ditzian Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2G1

Search for other papers by Z. Ditzian in
Current site
Google Scholar
PubMed
Close
and
A. Prymak Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2e-mail: prymak@gmail.com

Search for other papers by A. Prymak in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

For a Banach space B of functions which satisfies for some m>0
∗
a significant improvement for lower estimates of the moduli of smoothness ωr(f,t)B is achieved. As a result of these estimates, sharp Jackson inequalities which are superior to the classical Jackson type inequality are derived. Our investigation covers Banach spaces of functions on ℝd or for which translations are isometries or on Sd−1 for which rotations are isometries. Results for C0 semigroups of contractions are derived. As applications of the technique used in this paper, many new theorems are deduced. An Lp space with 1<p<∞ satisfies (∗) where s=max  (p,2), and many Orlicz spaces are shown to satisfy (∗) with appropriate s.
  • [1] Belinsky, E., Dai, F., Ditzian, Z. 2003 Multivariate approximating averages J. Approx. Theory 125 85105 .

  • [2] Bennet, C., Sharpley, R. 1988 Interpolation of Operators Academic Press New York.

  • [3] Butzer, P. L., Berens, H. 1967 Semi-groups of Operators and Approximation Springer Verlag Berlin.

  • [4] Dai, F., Ditzian, Z. 2004 Combinations of multivariate averages J. Approx. Theory 131 268283 .

  • [5] Dai, F., Ditzian, Z. 2005 Strong converse inequality for Poisson sums Proc. Amer. Math. Soc. 133 26092611 .

  • [6] Dai, F., Ditzian, Z. 2007 Cesàro summability and Marchaud inequality Constr. Approx. 25 7388 .

  • [7] Dai, F., Ditzian, Z., Tikhonov, S. 2008 Sharp Jackson inequalities J. Approx. Theory 151 86112 .

  • [8] DeVore, R., Lorentz, G. 1993 Constructive Approximation Springer Verlag Berlin.

  • [9] Ditzian, Z. 1988 On the Marchaud inequality Proc. Amer. Math. Soc. 103 198202.

  • [10] Ditzian, Z. 1989 Multivariate Landau–Kolmogorov-type inequality Math. Proc. Camb. Phil. Soc. 105 335350 .

  • [11] Ditzian, Z. 1995 Multidimensional Jacobi-type Bernstein–Durrmeyer operators Acta Sci. Math. (Szeged) 60 225243.

  • [12] Ditzian, Z. 1998 Fractional derivatives and best approximation Acta Math. Hungar. 81 323348 .

  • [13] Ditzian, Z. 1999 A modulus of smoothness on the unit sphere J. d’Anal. Math. 79 189200 .

  • [14] Ditzian, Z. 2006 Approximation on Banach spaces of functions on the sphere J. Approx. Theory 140 3145 .

  • [15] Ditzian, Z., Ivanov, K. G. 1993 Strong converse inequalities J. d’Anal. Math. 61 61111 .

  • [16] Ditzian, Z., Prymak, A. 2007 Sharp Marchaud and converse inequalities in Orlicz spaces Proc. Amer. Math. Soc. 135 11151121 .

  • [17] Dunkl, C. F., Xu, Y. 2001 Orthogonal Polynomials of Several Variables Cambridge University Press Cambridge .

  • [18] Lindenstrauss, Y., Tzafriri, L. 1979 Banach Spaces, Vol. II Springer-Verlag Berlin.

  • [19] Rao, M. M., Ren, Z. D. 1991 Theory of Orlicz Spaces Marcel Dekker New York.

  • [20] Totik, V. 1988 Sharp converse theorem of Lp polynomial approximation Constr. Approx. 4 419433 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 36 0 0
Jul 2024 4 0 0
Aug 2024 18 0 0
Sep 2024 34 0 0
Oct 2024 65 0 1
Nov 2024 20 0 0
Dec 2024 0 0 0