View More View Less
  • 1 Department of Mathematics, Faculty of Art&Sci., Cumhuriyet University, 58140 Sivas, Turkey
Restricted access

Abstract

We deal with the Dirac operator with eigenvalue dependent boundary and jump conditions. Properties of eigenvalues, eigenfunctions and the resolvent operator are studied. Moreover, uniqueness theorems of the inverse problem according to the Weyl functions and the spectral data (the sets of eigenvalues and norming constants; two different eigenvalues sets) are proved.

  • [1] Akdogan, Z., Demirci, M., Mukhtarov, O. Sh. 2005 Discontinuous Sturm–Liouville problems with eigenparameter-dependent boundary and transmissions conditions Acta Appl. Math. 86 329344 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2] Amirov, R. Kh. 2005 On system of Dirac differential equations with discontinuity conditions inside an interval Ukrainian Math. J. 57 712727 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3] Amirov, R. Kh., Ozkan, A. S., Keskin, B. 2009 Inverse problems for impulsive Sturm–Liouville operator with spectral parameter linearly contained in boundary conditions Integral Transforms and Special Functions 20 607618 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4] Binding, P. A., Browne, P. J., Seddighi, K. 1993 Sturm–Liouville problems with eigenparameter dependent boundary conditions Proc. Edinburgh Math. Soc., (2) 37 5772 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [5] Binding, P. A., Browne, P. J., Watson, B. A. 2000 Inverse spectral problems for Sturm–Liouville equations with eigenparameter dependent boundary conditions J. London Math. Soc. 62 161182 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [6] Binding, P. A., Browne, P. J., Watson, B. A. 2004 Equivalence of inverse Sturm–Liouville problems with boundary conditions rationally dependent on the eigenparameter J. Math. Anal. Appl. 29 246261 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [7] Freiling, G., Yurko, V. 2001 Inverse Sturm–Liouville Problems and Their Applications Nova Science New York.

  • [8] Fulton, C. T. 1977 Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions Proc. R. Soc. Edinburgh A77 293308.

    • Search Google Scholar
    • Export Citation
  • [9] Fulton, C. T. 1980 Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions Proc. R. Soc. Edinburgh A87 134.

    • Search Google Scholar
    • Export Citation
  • [10] Gasymov, M. G., Dzhabiev, T. T. 1975 Determination of a system of Dirac differential equations using two spectra Proceedings of School-Seminar on the Spectral Theory of Operators and Representations of Group Theory Elm, Baku 4671 [in Russian].

    • Search Google Scholar
    • Export Citation
  • [11] Gasymov, M. G. 1968 Inverse problem of the scattering theory for Dirac system of order 2n Tr. Mosk. Mat. Obshch. 19 41112 Birkhauser (Basel, 1997).

    • Search Google Scholar
    • Export Citation
  • [12] Guliyev, N. J. 2005 Inverse eigenvalue problems for Sturm–Liouville equations with spectral parameter linearly contained in one of the boundary conditions Inverse Problems 21 13151330 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [13] Guseinov, I. M. 1999 On the representation of Jost solutions of a system of Dirac differential equations with discontinuous coefficients Izv. Akad. Nauk Azerb. SSR 5 4145.

    • Search Google Scholar
    • Export Citation
  • [14] Hald, O. H. 1984 Discontinuous inverse eigenvalue problems Comm. Pure Appl. Math. 37 539577 .

  • [15] Jdanovich, B. F. 1960 Formulae for the zeros of Dirichlet polynomials and quasi-polynomials Dokl. Akad. Nauk SSSR 135 10461049.

    • Search Google Scholar
    • Export Citation
  • [16] Levitan, B. M., Sargsyan, I. S. 1988 Sturm–Liouville and Dirac Operators Nauka Moscow [in Russian].

  • [17] Marchenko, V. A. 1977 Sturm–Liouville Operators and Their Applications Nauka Dumka Kiev English transl. Birkhäuser (Basel, 1986).

    • Search Google Scholar
    • Export Citation
  • [18] Mennicken, R., Schmid, H., Shkalikov, A. A. 1998 On the eigenvalue accumulation of Sturm–Liouville problems depending nonlinearly on the spectral parameter Math. Nachr. 189 157170 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [19] Mukhtarov, O. Sh. 1994 Discontinuous boundary-value problem with spectral parameter in boundary conditions Turkish J. Math. 18 183192.

    • Search Google Scholar
    • Export Citation
  • [20] Poisson, S. D. 1820 Memoire sur la maniere d’exprimer les functions par des series periodiques J. Ecole Polytechnique 18 417489.

    • Search Google Scholar
    • Export Citation
  • [21] Russakovskii, E. M. 1975 Operator treatment of boundary problems with spectral parameters entering via polynomials in the boundary conditions Funct. Anal. Appl. 9 358359 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [22] Russakovskii, E., Matrix boundary value problems with eigenvalue dependent boundary conditions, Oper. Theory Adv. Appl. (1995).

  • [23] Schmid, H., Tretter, C. 2002 Singular Dirac systems and Sturm–Liouville problems nonlinear in the spectral parameter J. Differential Equations 181 511542 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)