Authors: T. Noiri 1 and B. Roy 2
View More View Less
  • 1 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, Japan
  • | 2 Department of Mathematics, Women’s Christian College, 6, Greek Church Row, Kolkata- 700 026, India
Restricted access

Abstract

A new kind of sets called generalized μ-closed (briefly g μ-closed) sets are introduced and studied in a topological space by using the concept of generalized open sets introduced by Á. Császár. The class of all g μ-closed sets is strictly larger than the class of all μ-closed sets. Furthermore, g-closed sets (in the sense of N. Levine [17]) is a special type of g μ-closed sets in a topological space. Some of their properties are investigated. Finally, some characterizations of μg-regular and μg-normal spaces have been given.

  • [1] El-Monsef, M. E. Abd, El-Deeb, S. N., Mahmoud, R. A. 1983 β-open sets and β-continuous mappings Bull. Fac. Sci. Assiut Univ. 12 7790.

    • Search Google Scholar
    • Export Citation
  • [2] El-Monsef, M. E. Abd, Geaisa, A. N., Mahmoud, R. A. 1985 β-regular spaces Proc. Math. Phys. Soc. Egypt 60 4752.

  • [3] Al-Omari, A., Noorani, M. Salmi Md. 2009 On generalized b-closed sets Bull. Malays. Math. Sci. Soc. 32 1930.

  • [4] Andrijević, D. 1996 On b-open sets Mat. Vesnik 48 5964.

  • [5] Arya, S. P., Nour, T. 1990 Characterizations of s-normal spaces Indian J. Appl. Math. 21 717719.

  • [6] Császár, Á. 2002 Generalized topology, generalized continuity Acta Math. Hungar. 96 351357 .

  • [7] Császár, Á. 2005 Generalized open sets in generalized topologies Acta Math. Hungar. 106 5366 .

  • [8] Császár, Á. 2008 δ- and θ-modifications of generalized topologies Acta Math. Hungar. 120 275279 .

  • [9] Dontchev, J., Ganster, M. 1996 On δ-generalized closed sets and T3/4-spaces Mem. Fac. Sci. Kochi Univ. Ser. A, Math. 17 1531.

  • [10] Dontchev, J. 1995 On generalizing semi-preopen sets Mem. Fac. Sci. Kochi Univ. Ser. A, Math. 16 3548.

  • [11] Dontchev, J., Maki, H. 1999 On θ-generalized closed sets Internat. J. Math. Math. Sci. 22 239249 .

  • [12] Ekici, E. 2007 On γ-normal spaces Bull. Math. Soc. Sci. Math. Roumanie 50 98 259272.

  • [13] Ekici, E., Noiri, T. 2006 On a generalization of normal, almost normal and mildly normal spaces-I Math. Moravica 10 920.

  • [14] El-Deeb, S. N., Hasanein, I. A., Mashhour, A. S., Noiri, T. 1983 On p-regular spaces Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S.) 27(75) 311315.

    • Search Google Scholar
    • Export Citation
  • [15] Ganster, M., Steiner, M. 2007 On bτ-closed sets Appl. Gen. Topol. 8 243247.

  • [16] Kelley, J. L. 1955 General Topology Van Nostrand New York.

  • [17] Levine, N. 1970 Generalized closed sets in topology Rend. Circ. Mat. Palermo, (2) 19 8996 .

  • [18] Levine, N. 1963 Semi-open sets and semi-continuity in topological spaces Amer. Math. Monthly 70 3641 .

  • [19] Maheshwari, S. N., Prasad, R. 1978 On s-normal spaces Bull. Math. Soc. Math. R.S. Roumanie 22 70 2729.

  • [20] Maheshwari, S. N., Prasad, R. 1975 On s-regular spaces Glasnik Mat. Ser. III 10 30 347350.

  • [21] Mahmoud, R. A., El-Monsef, M. E. Abd 1990 β-irresolute and β-topological invariants Proc. Pakistan Acad. Sci. 27 285296.

  • [22] Maio Di, G., Noiri, T. 1987 On s-closed spaces Indian J. Pure Appl. Math. 18 225233.

  • [23] Maki, H., Devi, R., Balachandran, K. 1994 Associated topologies of generalized α-closed sets and α generalized closed sets Mem. Fac. Sci. Kochi Univ. (Math.) 15 5163.

    • Search Google Scholar
    • Export Citation
  • [24] Mashhour, A. S., Abd El-Monsef, M. E., El-Deeb, S. N. 1982 On precontinuous and weak precontinuous mappings Proc. Math. Phys. Soc. Egypt 53 4753.

    • Search Google Scholar
    • Export Citation
  • [25] Nour, T. M., Contributions to the Theory of Bitopological Spaces, Ph.D. Thesis (Delhi, 1989).

  • [26] Navalagi, G., Hanif, Md. 2008 On θgs-neighbourhoods Indian J. Math. Math. Sci. 4 2131.

  • [27] Njåstad, O. 1965 On some classes of nearly open sets Pacific J. Math. 15 961970.

  • [28] Park, J. H., Lee, B. Y., Son, M. J. 1997 On δ-semiopen sets in topological space J. Indian Acad. Math. 19 5967.

  • [29] Park, J. H., Park, Y. B., Lee, B. Y. 2002 On gp-closed sets and pre gp-continuous functions Indian J. Pure Appl. Math. 33 312.

  • [30] Park, J. H. 2006 Strongly θ-b-continuous functions Acta Math. Hungar. 110 347359 .

  • [31] Park, J. H., Song, D. S., Saadati, R. 2007 On generalized δ-semiclosed sets in topological spaces Chaos Solitons and Fractals 33 13291338 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [32] Raychaudhuri, S., Mukherjee, M. N. 1993 On δ-almost continuity and δ-preopen sets Bull. Inst. Math. Acad. Sinica 21 357366.

  • [33] Veličko, N. V. 1966 H-closed topological spaces Mat. Sb. 70 98112.

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2021 3 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0
Nov 2021 1 0 0
Dec 2021 0 0 0
Jan 2022 1 0 0
Feb 2022 0 0 0