We prove that the minimal cardinality of a semitransitive subsemigroup in the singular part of the symmetric inverse semigroup
is 2n−p+1, where p is the greatest proper divisor of n, and classify all semitransitive subsemigroups of this minimal cardinality.
[1] Bernik, J., Drnovšek, R., Kokol Bukovšek, D., Košir, T., Omladič, M. 2008 Reducibility and triangularizability of semitransitive spaces of operators Houston J. Math. 34 235–247.
[2] Bernik, J., Drnovšek, R., Kokol Bukovšek, D., Košir, T., Omladič, M. and Radjavi, H., On semitransitive Jordan algebras of matrices, to appear in J. Alg. Appl.
[3] Bernik, J., Grunenfelder, L., Mastnak, M., Radjavi, H., Troitsky, V. G. 2005 On semitransitive collections of operators Semigroup Forum 70 436–450 .
[4] Cvetko-Vah, K., Kokol Bukovšek, D., Košir, T., Kudryavtseva, G., Lavrenyuk, Ya., Oliynyk, A. 2009 Semitransitive subsemigroups of the symmetric inverse semigroups Semigroup Forum 78 138–147 .
[5] East, J. 2006 A presentation of the singular part of the symmetric inverse monoid Comm. Algebra 34 1671–1689 .
[6] Ganyushkin, O., Mazorchuk, V. 2009 Classical Finite Transformation Semigroups, an Introduction Algebra and Applications 9 . Springer Verlag.
[7] Maltcev, V., Mazorchuk, V. 2007 Presentation of the singular part of the Brauer monoid Math. Bohem. 132 297–323.
[8] Radjavi, H., Troitsky, V. G. 2009 Semitransitive subspaces of operators Linear and Multilinear Algebra 57 1–11 .
[9] Rosenthal, H., Troitsky, V. G. 2005 Strictly semi-transitive operator algebras J. Operator Theory 53 315–329.
[10] Semitransitivity Working Group at LAW’05, Bled 2006 Semitransitive subspaces of matrices Electronic Journal of Linear Algebra 15 225–238.