A surface immersed in R4 is called a proper affine sphere if the position vector belongs to the affine normal plane. We classify proper affine spheres with ∇⊥g⊥=0 whose affine mean curvature vector has constant length. Moreover, we find some concrete examples of affine spheres which are not affine umbilical.
[1] Dillen, F., Mys, G., Verstraelen, L., Vrancken, L. 1994 The affine mean curvature vector for surfaces in R4 Math. Nachr. 166 155–165 .
[2] Hou, Z.-H., Fu, Y. 2009 Flat affine maximal surfaces in R4 Result. Math. 55 389–400 .
[3] Li, J. 1999 Harmonic surfaces in affine 4-space Internat. J. Math. 10 523–528.
[4] Magid, M., Scharlach, C., Vrancken, L. 1995 Affine umbilical surfaces in R4 Manuscripta Math. 88 275–289 .
[5] Magid, M., Vrancken, L. 2000 Flat affine surfaces in R4 with flat normal connection Geom. Dedicata 81 19–31 .
[6] Magid, M., Vrancken, L. 1999 Affine translation surfaces Result. Math. 35 134–144.
[7] Martínez, A., Milán, F. 1995 Affine definite 2-spheres in R4 Geometry and Topology of Submanifolds VII World Scientific Singapore 182–185.
[8] Martínez, A., Milán, F. 1995 A characterization of the complex paraboloid Result. Math. 27 302–307.
[9] Nomizu, K., Sasaki, T. 1994 Affine Differential Geometry: Geometry of Affine Immersions Cambridge University Press Cambridge, New York.
[10] Nomizu, K., Vrancken, L. 1993 A new equiaffine theory for surfaces in R4 Internat. J. Math. 4 127–165 .
[11] Scharlach, C., Affine Geometry of Surfaces and Hypersurfaces in R4, Habilitation Thesis, Fac. II, TU Berlin (2006).
[12] Verstraelen, L., Vrancken, L., Witowicz, P. 2000 Indefinite affine umbilical surfaces in R4 Geom. Dedicata 79 109–119 .
[13] Vrancken, L. 1995 Affine surfaces whose geodesics are planar curves Proc. Amer. Math. Soc. 123 3851–3854 .