View More View Less
  • 1 Department of Mathematics, Dalian Nationalities University, Dalian 116600, P. R. China
  • | 2 School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, P. R. China
Restricted access

Abstract

A surface immersed in R4 is called a proper affine sphere if the position vector belongs to the affine normal plane. We classify proper affine spheres with ∇g=0 whose affine mean curvature vector has constant length. Moreover, we find some concrete examples of affine spheres which are not affine umbilical.

  • [1] Dillen, F., Mys, G., Verstraelen, L., Vrancken, L. 1994 The affine mean curvature vector for surfaces in R4 Math. Nachr. 166 155165 .

  • [2] Hou, Z.-H., Fu, Y. 2009 Flat affine maximal surfaces in R4 Result. Math. 55 389400 .

  • [3] Li, J. 1999 Harmonic surfaces in affine 4-space Internat. J. Math. 10 523528.

  • [4] Magid, M., Scharlach, C., Vrancken, L. 1995 Affine umbilical surfaces in R4 Manuscripta Math. 88 275289 .

  • [5] Magid, M., Vrancken, L. 2000 Flat affine surfaces in R4 with flat normal connection Geom. Dedicata 81 1931 .

  • [6] Magid, M., Vrancken, L. 1999 Affine translation surfaces Result. Math. 35 134144.

  • [7] Martínez, A., Milán, F. 1995 Affine definite 2-spheres in R4 Geometry and Topology of Submanifolds VII World Scientific Singapore 182185.

    • Search Google Scholar
    • Export Citation
  • [8] Martínez, A., Milán, F. 1995 A characterization of the complex paraboloid Result. Math. 27 302307.

  • [9] Nomizu, K., Sasaki, T. 1994 Affine Differential Geometry: Geometry of Affine Immersions Cambridge University Press Cambridge, New York.

    • Search Google Scholar
    • Export Citation
  • [10] Nomizu, K., Vrancken, L. 1993 A new equiaffine theory for surfaces in R4 Internat. J. Math. 4 127165 .

  • [11] Scharlach, C., Affine Geometry of Surfaces and Hypersurfaces in R4, Habilitation Thesis, Fac. II, TU Berlin (2006).

  • [12] Verstraelen, L., Vrancken, L., Witowicz, P. 2000 Indefinite affine umbilical surfaces in R4 Geom. Dedicata 79 109119 .

  • [13] Vrancken, L. 1995 Affine surfaces whose geodesics are planar curves Proc. Amer. Math. Soc. 123 38513854 .

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0