View More View Less
  • 1 Department of Mathematics, University of Modena and Reggio E., Via Campi 213/B, 41100 Modena, Italy
Restricted access

Abstract

We construct a 2-parametric family of tetrahedron manifolds, mainly with hyperbolic structure. We give geometric presentations of their fundamental groups with two generators. Furthermore, we show that the constructed manifolds are 2-fold coverings of the 3-sphere branched over specified knots, and give a surgery description of them.

  • [1] Birman, J. S., Hilden, H. M. 1975 Heegaard splittings of branched coverings of Trans. Amer. Math. Soc. 213 315352.

  • [2] Burde, G., Zieschang, H. 1985 Knots Walter de Gruyter Inc. Berlin–New York.

  • [3] Cavicchioli, A., Telloni, A. I. 2009 On football manifolds of E. Molnár Acta Math. Hungar. 124 321332 .

  • [4] Coxeter, H. S. M., Moser, W. O. J. 1957 Generators and Relations for Discrete Groups Springer Verlag Berlin–Göttingen–Heidelberg.

  • [5] Fomenko, A. T., Matveev, S. V. 1997 Algorithmic and Computer Methods for Three-Manifolds Math. and Its Appl. 425 Kluwer Acad. Publ. Dordrecht.

    • Search Google Scholar
    • Export Citation
  • [6] Fomenko, A. T., Matveev, S. V. 1988 Isoenergetic surfaces of Hamiltonian systems, the enumeration of three-dimensional manifolds in order of growth of their complexity, and the calculation of the volumes of closed hyperbolic manifolds Uspekhi Mat. Nauk. 43 522 English translation in Russian Math. Surveys, 43 (1988), 3–24.

    • Search Google Scholar
    • Export Citation
  • [7] Gabai, D., Meyerhoff, R. and Milley, P., Minimum volume cusped hyperbolic three-manifolds, ArXiv:0705.4325v1 [math.GT], 30 May 2007.

    • Search Google Scholar
    • Export Citation
  • [8] Grasselli, L., Piccarreta, S. 1998 Tetrahedron manifolds via coloured graphs Discrete Math. 182 125137 .

  • [9] Kawauchi, A. 1996 A Survey of Knot Theory Birkhäuser Verlag Basel–Boston–Berlin.

  • [10] Kirby, R. 1978 A calculus for framed links in Invent. Math. 45 3556 .

  • [11] Margulis, G. A. 1970 Isometry of closed manifolds of constant negative curvature with the same fundamental group Dokl. Akad. Nauk SSSR 192 736737.

    • Search Google Scholar
    • Export Citation
  • [12] Mednykh, A. D. 1985 Automorphism groups of three-dimensional hyperbolic manifolds Soviet Math. Dokl. 32 633635.

  • [13] Mednykh, A. D., Vesnin, A. Yu. 1998 Visualization of the isometry group action on the Fomenko–Matveev–Weeks manifold J. Lie Theory 8 5166.

    • Search Google Scholar
    • Export Citation
  • [14] Mednykh, A. D., Vesnin, A. Yu. 1998 Covering properties of small volume hyperbolic 3-manifolds J. Knot Theory and its Ram. 7 381392 .

  • [15] Molnár, E. 1989 On isometries of space forms Proc. Conference on Differential Geometry Eger, Hungary 1989 Coll. Math. Soc. J. Bolyai 56 509534.

    • Search Google Scholar
    • Export Citation
  • [16] Molnár, E. 1990 Tetrahedron manifolds and space forms Note Mat. 10 335346.

  • [17] Montesinos, J. M. 1975 Surgery on links and double branched covers of Neuwirth, L. P. (eds.) Knots, Groups and 3-Manifolds Ann. Math. Studies 84 Princeton Univ. Press Princeton, N.J.

    • Search Google Scholar
    • Export Citation
  • [18] Murasugi, K. 1996 Knot Theory and its Applications Birkhäuser Verlag Boston–Basel–Berlin.

  • [19] Mostow, G. D. 1973 Strong Rigidity of Locally Symmetric Spaces Ann. of Math. Stud. 78 Princeton Univ. Press Princeton, N.J.

  • [20] Rolfsen, D. 1976 Knots and Links Math. Lect. Series 7 Publish or Perish Inc. Berkeley.

  • [21] Singer, J. 1933 Three-dimensional manifolds and their Heegaard diagrams Trans. Amer. Math. Soc. 35 88111 .

  • [22] Seifert, H., Threlfall, W. 1980 A Textbook of Topology; Topology of 3-dimensional fibered spaces Academic Press New York–London.

  • [23] Spaggiari, F. 2005 The combinatorics of some tetrahedron manifolds Discrete Math. 300 163179 .

  • [24] Takahashi, M. 1977 Two knots with the same 2-fold branched covering space Yokohama Math. J. 25 9199.

  • [25] Thurston, W. P. 1997 Three-Dimensional Geometry and Topology of 3-Manifolds Princeton Univ. Press Princeton, N.J.

  • [26] Weeks, J. R., Hyperbolic structure on 3-manifolds, Princeton Univ. PhD. Thesis (1985).

  • [27] Wolf, J. A. 1972 Spaces of Constant Curvature Univ. of California Berkeley.

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 2 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0