For a finite abelian group G and a positive integer d, let sdℕ(G) denote the smallest integer ℓ∊ℕ0 such that every sequence S over G of length |S|≧ℓ has a nonempty zero-sum subsequence T of length |T|≡0 mod d. We determine sdℕ(G) for all d≧1 when G has rank at most two and, under mild conditions on d, also obtain precise values in the case of p-groups. In the same spirit, we obtain new upper bounds for the Erdős–Ginzburg–Ziv constant provided that, for the p-subgroups Gp of G, the Davenport constant D(Gp) is bounded above by 2exp (Gp)−1. This generalizes former results for groups of rank two.
[1] Adhikari, S. D., Grynkiewicz, D. J. and Sun, Z.-W., On weighted zero-sum sequences, manuscript.
[2] Bhowmik, G., Schlage-Puchta, J.-C. 2007 Davenport’s constant for groups of the form ℤ3⊕ℤ3⊕ℤ3d Granville, A., Nathanson, M. B., Solymosi, J. (eds.) Additive Combinatorics CRM Proceedings and Lecture Notes 43 307–326 American Mathematical Society.
[3] Chi, R., Ding, S., Gao, W., Geroldinger, A., Schmid, W. A. 2005 On zero-sum subsequences of restricted size. IV Acta Math. Hungar. 107 337–344 .
[4] Delorme, C., Ordaz, O., Quiroz, D. 2001 Some remarks on Davenport constant Discrete Math. 237 119–128 .
[5] Edel, Y., Elsholtz, C., Geroldinger, A., Kubertin, S., Rackham, L. 2007 Zero-sum problems in finite abelian groups and affine caps Quarterly. J. Math., Oxford II. Ser. 58 159–186 .
[6] Freeze, M., Schmid, W. A. 2010 Remarks on a generalization of the Davenport constant Discrete Math. 310 3373–3389 .
[7] Gao, W. 2001 On zero sum subsequences of restricted size III Ars Combin. 61 65–72.
[8] Gao, W., Geroldinger, A. 2006 Zero-sum problems in finite abelian groups: a survey Expo. Math. 24 337–369.
[9] Gao, W., Geroldinger, A. 2007 On the number of subsequences with given sum of sequences over finite abelian p-groups Rocky Mt. J. Math. 37 1541–1550 .
[10] Gao, W., Geroldinger, A., Schmid, W. A. 2007 Inverse zero-sum problems Acta Arith. 128 245–279 .
[11] Gao, W., Hamidoune, Y. ould, Wang, G. 2010 Distinct lengths modular zero-sum subsequences: a proof of Graham’s conjecture J. Number Theory 130 1425–1431 .
[12] Gao, W., Peng, J. 2009 On the number of zero-sum subsequences of restricted size Integers 9 537–554 . Paper A41.
[13] Gao, W., Thangadurai, R. 2006 On zero-sum sequences of prescribed length Aequationes Math. 72 201–212 .
[14] Geroldinger, A. 1993 On a conjecture of Kleitman and Lemke J. Number Theory 44 60–65 .
[15] Geroldinger, A. 2009 Additive group theory and non-unique factorizations Geroldinger, A., Ruzsa, I. (eds.) Combinatorial Number Theory and Additive Group Theory Advanced Courses in Mathematics CRM Barcelona 1–86 . Birkhäuser.
[16] Geroldinger, A., Grynkiewicz, D. J. 2009 On the structure of minimal zero-sum sequences with maximal cross number J. Combinatorics and Number Theory 1 9–26.
[17] Geroldinger, A., Grynkiewicz, D. J. and Schmid, W. A., The catenary degree of Krull monoids I, J. Théor. Nombres Bordeaux, to appear.
[18] Geroldinger, A., Halter-Koch, F. 2006 Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory Pure and Applied Mathematics 278 . Chapman & Hall/CRC.
[19] Geroldinger, A., Liebmann, M. and Philipp, A., On the Davenport constant and on the structure of extremal sequences, Period. Math. Hungar., to appear.
[20] Geroldinger, A., Schneider, R. 1992 On Davenport’s constant J. Comb. Theory, Ser. A 61 147–152 .
[21] Girard, B., On the existence of distinct lengths zero-sum subsequences, Rocky Mt. J. Math., to appear.
[22] Grynkiewicz, D. J., Note on a conjecture of Graham, manuscript.
[23] Grynkiewicz, D. J., On a conjecture of Hamidoune for subsequence sums, Integers, 5 (2005), Paper A07, 11p.
[24] Kannan, S. S. and Pattanayak, S. K., Projective normality of finite group quotients and EGZ theorem, manuscript.
[25] Kannan, S. S., Pattanayak, S. K., Sardar, P. 2009 Projective normality of finite group quotients Proc. Am. Math. Soc. 137 863–867 .
[26] Kubertin, S. 2005 Zero-sums of length kq in Acta Arith. 116 145–152 .
[27] Reiher, C. 2007 On Kemnitz’ conjecture concerning lattice points in the plane Ramanujan J. 13 333–337 .
[28] Schmid, W. A., The inverse problem associated to the Davenport constant for C2⊕C2⊕C2n, and applications to the arithmetical characterization of class groups, manuscript.
[29] Schmid, W. A., On zero-sum subsequences in finite abelian groups, Integers, 1 (2001), Paper A01, 8p.
[30] Schmid, W. A., Zhuang, J. J. 2010 On short zero-sum subsequences over p-groups Ars Comb. 95 343–352.
[31] Yuan, P., Guan, H. and Zeng, X., Normal sequences over finite abelian groups, J. Comb. Theory, Ser. A, to appear.