View More View Less
  • 1 I. Javakhishvili Tbilisi State University, 2, University St., Tbilisi 0128, Georgia
Restricted access

Abstract

Properties of Fourier–Haar coefficients of continuous functions are studied. It is established that Fourier–Haar coefficients of continuous functions are monotonic in a certain sense for convex functions. Questions of quasivariation of Fourier–Haar coefficients of continuous functions are also considered.

  • [1] Alexits, G. 1961 Convergence Problems of Orthogonal Series International Series of Monographs in Pure and Applied Mathematics 20 Pergamon Press New York–Oxford–Paris translated from German.

    • Search Google Scholar
    • Export Citation
  • [2] Golubov, B. I. 1964 On Fourier series of continuous functions with respect to a Haar system Izv. Akad. Nauk SSSR Ser. Mat. 28 12711296 in Russian.

    • Search Google Scholar
    • Export Citation
  • [3] Tsagareishvili, V. Sh. 2004 On the variation of the Fourier–Haar coefficients Mat. Sb. 195 143160 translation in Sb. Math., 195 (2004), 441–457 (in Russian).

    • Search Google Scholar
    • Export Citation
  • [4] Tsagareishvili, V. Sh. 1971 The Fourier coefficients of a continuous function with respect to the Haar system Soobshch. Akad. Nauk Grusin. SSR (Bull. Georgian Acad. Sci.) 63 3739 (in Russian).

    • Search Google Scholar
    • Export Citation
  • [5] Timan, A. F. 1960 Theory of Approximation of Functions of a Real Variable Gosudarstv. Izdat. Fiz.-Mat. Lit. Moscow in Russian.

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0