View More View Less
  • 1 Department of Numerical Analysis, Eötvös L. University, H-1117 Budapest, Pázmány P. sétány 1/C., Hungary
Restricted access

Abstract

It is proved that the maximal operator of the triangular Cesàro means of a two-dimensional Fourier series is bounded from the periodic Hardy space to for all 2/(2+α)<p≦∞ and, consequently, is of weak type (1,1). As a consequence we obtain that the triangular Cesàro means of a function converge a.e. to f.

  • [1] Berens, H., Li, Z., Xu, Y. 2001 On l−1 Riesz summability of the inverse Fourier integral Indag. Mathem. 12 4153 .

  • [2] Berens, H., Xu, Y. 1996 Fejér means for multivariate Fourier series Math. Z. 221 449465.

  • [3] Carleson, L. 1966 On convergence and growth of partial sums of Fourier series Acta Math. 116 135157 .

  • [4] Fefferman, C. 1971 On the convergence of multiple Fourier series Bull. Amer. Math. Soc. 77 744745 .

  • [5] Grafakos, L. 2004 Classical and Modern Fourier Analysis Pearson Education New Jersey.

  • [6] Herriot, J. G. 1944 Nörlund summability of multiple Fourier series Duke Math. J. 11 735754 .

  • [7] Li, Z., Xu, Y. 2000 Summability of product Jacobi expansions J. Approx. Theory 104 287301 .

  • [8] Marcinkiewicz, J., Zygmund, A. 1939 On the summability of double Fourier series Fund. Math. 32 122132.

  • [9] Stein, E. M. 1993 Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals Princeton Univ. Press Princeton, N.J.

    • Search Google Scholar
    • Export Citation
  • [10] Szili, L., Vértesi, P. 2009 On multivariate projection operators J. Appr. Theory 159 154164 .

  • [11] Weisz, F. 2002 Summability of Multi-dimensional Fourier Series and Hardy Spaces Mathematics and its Applications Kluwer Academic Publishers Dordrecht, Boston, London.

    • Search Google Scholar
    • Export Citation
  • [12] Xu, Y. 1995 Christoffel functions and Fourier series for multivariate orthogonal polynomials J. Appr. Theory 82 205239 .

  • [13] Zygmund, A. 2002 Trigonometric Series 3 Cambridge Press London.

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2021 0 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0
Dec 2021 3 0 0
Jan 2022 1 0 0
Feb 2022 0 0 0