View More View Less
  • 1 College of Science, Nanjing Agricultural University, Nanjing 210095, P.R. China
  • | 2 College of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing 211171, P.R. China
Restricted access

Abstract

We obtain the structure theorem for -Hopf bimodules over Hopf algebroids, where H is the total algebra of the Hopf algebroid . Based on this theorem, we investigate the structure theorem for comodule algebras over Hopf algebroids.

  • [1] Militaru, G., Stefan, D. 1994 Extending modules for Hopf Galois extensions Comm. Algebra 22 56575678 .

  • [2] Panaite, F., Oystaeyen Van, F. 2007 A structure theorem for quasi-Hopf comodule algebras Proc. Amer. Math. Soc. 135 16691677 .

  • [3] Böhm, G., Szlachányi, K. 2004 Hopf algebroids with bijective antipodes: axioms, integrals and duals J. Algebras 274 708750 .

  • [4] Böhm, G. 2005 An Alternative Notion of Hopf Algebroids Lect. Notes Pure Appl. Math. 239 New York.

  • [5] Böhm, G. 2005 Integral theory for Hopf algebroids Algebr. Repesent. Th. 8 563599 . Corrigendum, doi:10.1007/s10468-009-9167-0.

  • [6] Takeuchi, M. 1977 Groups of algebras over J. Math. Soc. Japan 29 459492 .

  • [7] Lu, J. H. 1996 Hopf algebroids and quantum groupoids Internat. J. Math. 7 4770 .

  • [8] Xu, P. 2001 Quantum groupoids Comm. Math. Phys. 216 539581 .

  • [9] Kadison, L., Szlachányi, K. 2003 Bialgebroid actions on depth two extensions and duality Adv. Math. 179 75121 .

  • [10] Böhm, G., Nill, F., Szlachányi, K. 1999 Weak Hopf algebras I. Integral theory and C-structure J. Algebra 221 385438 .

  • [11] Böhm, G. 2009 Hopf Algebroids Handbook of Algebra 6 Elsevier.

  • [12] Morava, J. 1985 Noetherian localisations of categories of cobordism comodules Ann. Math. 121 139 .

  • [13] Mrc̆un, J. 2001 The Hopf algebroids of functions on étale groupoids and their principal Morita equivalence J. Pure Appl. Algebra 160 249262 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14] Ardizzoni, A., Böhm, G., Menini, C. 2007 A Schneider type theorem for Hopf algebroids J. Algebra 318 225269 .

  • [15] Sweedler, M. E. 1975 Groups of simple algebras I.H.E.S., Publ. 44 79189.

  • [16] Sweedler, M. E. 1975 The predual theorem to the Jacobson-Bourbaki theorem Trans. Amer. Math. Soc. 213 391406 .

  • [17] Brzeziński, T., Wisbauer, R. 2003 Corings and Comodules Cambridge University Press Cambridge . http://www.maths.swan.ac.uk/staff/tb/corings.htm.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [18] Böhm, G., Brzeziński, T. 2006 Cleft extensions of Hopf algebroids Appl. Categor. Struct. 14 431469 . Corrigendum, 17 (2009), 613–620.

  • [19] Böhm, G. 2005 Galois theory for Hopf algebroids Ann. Univ. Ferrara-Sez. VII-Sc. Mat. LI 233262.

  • [20] Böhm, G. 2006 Galois extensions over commutative and noncommutative base Caenepeel, S., Oystaeyen Van, F. (eds.) New Techniques in Hopf Algebras and Graded Ring Theory http://arxiv.org/abs/math/0701064v2.

    • Search Google Scholar
    • Export Citation
  • [21] Böhm, G., Vercruysse, J. 2009 Corrigendum to “Morita theory for coring extensions and cleft bicomodules” [Adv. Math., 209 (2007), 611–648] Adv. Math. 221 682686 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0