View More View Less
  • 1 Faculty of Mathematics, Computer Science and Econometry, University of Zielona Góra, Podgórna 50, 65246 Zielona Góra, Poland
  • | 2 Institute of Mathematics, Silesian University, Bankowa 14, 40007 Katowice, Poland
Restricted access

Abstract

Without any regularity conditions, we determine all the Cauchy means C[f,g] that are invariant with respect to the mean-type mapping (L[f],L[g]) where L[f] denotes the Lagrangean mean generated by f. Applications in iteration theory and functional equation are given.

  • [1] Berrone, L. R., Moro, J. 1998 Lagrangian means Aequationes Math. 55 217226 .

  • [2] Borwein, J. M., Borwein, P. B. 1987 Pi and the AGM, a Study in Analytic Number Theory and Computational Complexity John Wiley & Sons Inc. New York.

    • Search Google Scholar
    • Export Citation
  • [3] Bullen, P. S., Mitrinović, D. S., Vasić, P. M. 1988 Means and Their Inequalities Mathematics and its Applications D. Reidel Publishing Company Dordrecht–Boston–Lancaster–Tokyo.

    • Search Google Scholar
    • Export Citation
  • [4] Bullen, P. S. 2003 Handbook of Means and Their Inequalities Kluwer Academic Dordrecht, Boston, London.

  • [5] Daróczy, Z., Maksa, Gy. 1999 On a problem of Matkowski Colloq. Math. 82 117123.

  • [6] Daróczy, Z., Páles, Zs. 2001 On means that are both quasi-arithmetic and conjugate arithmetic Acta Math. Hungar. 90 271282 .

  • [7] Daróczy, Z., Páles, Zs. 2003 On functional equations involving means Publ. Math. Debrecen 62 363377.

  • [8] Głazowska, D., Matkowski, J. 2007 An invariance of the geometric mean with respect to Lagrangean means J. Math. Anal. Appl. 331 11871199 .

  • [9] Jarczyk, J. 2007 Invariance of weighted qusi-arithmetic means with continuous generators Publ. Math. Debrecen 71 279294.

  • [10] Jarczyk, J., Matkowski, J. 2006 Invariance in the class of weighted quasi-arithmetic means Ann. Polon. Math. 88 3951 .

  • [11] Kuczma, M. 1985 An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equations and Jensen Inequality Uniwersytet Śla̧ski–PWN Warszawa–Kraków–Katowice.

    • Search Google Scholar
    • Export Citation
  • [12] Matkowski, J. 1999 Iterations of mean-type mappings and invariant means Ann. Math. Siles. 13 211226.

  • [13] Matkowski, J. 1999 Mean value property and associated functional equation Aequationes Math. 58 4659 .

  • [14] Matkowski, J. 1999 Invariant and complementary means Aequationes Math. 57 87107 .

  • [15] Matkowski, J. 2005 Lagrangean mean-type mapping for which the arithmetic mean is invariant J. Math. Anal. Appl. 309 1524 .

  • [16] Matkowski, J. 2006 On iterations of means and functional equations Iteration Theory. (ECIT’04), Grazer Math. Ber. 350 184197.

    • Search Google Scholar
    • Export Citation
  • [17] Sutô, O. 1914 Studies on some functional equations I Tohŏku Math. J. 6 115 II, ibid., 82–101.

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)