View More View Less
  • 1 School of Mathematics and Computing Science, Changsha University of Science and Technology, Changsha 410114, Hunan, P.R. China
  • | 2 School of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning, Guangxi, 530006, P.R. China
Restricted access

Abstract

This paper is devoted to anti-periodic solutions for a class of implicit differential equations with nonmonotone perturbations. The main tools in our study will be the maximal monotone property of the derivative operator with anti-periodic conditions and a convergent approximation procedure.

  • [1] Aizicovici, S., McKibben, M., Reich, S. 2001 Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities Nonlinear Anal. 43 233251 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2] Aizicovici, S., Pavel, N. H. 1991 Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space J. Funct. Anal. 99 387408 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3] Barbu, V., Favini, A. 1998 Existence for implicit nonlinear differential equation Nonlinear Analysis, TMA 32 3340 .

  • [4] Chen, Yuqing, Nieto, Juan J., O’Regan, D. 2007 Anti-periodic solutions for full nonlinear first-order differential equations Mathematical and Computer Modelling 46 11831190 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [5] Denkowski, Z., Migorski, S., Papageorgiou, N. S. 2003 An Introduction to Nonlinear Analysis: Applications Kluwer Academic/ Plenum Publishers Boston, Dordrecht, London, New York.

    • Search Google Scholar
    • Export Citation
  • [6] Haraux, A. 1989 Anti-periodic solutions of some nonlinear evolution equations Manuscripta Math. 63 479505 .

  • [7] Jager, W., Simon, L. 2006 On a system of quasilinear parabolic functional differential equations Acta Math. Hungar. 112 3955 .

  • [8] Liu, Zhenhai 1997 Nonlinear evolution variational inequalities with nonmonotone perturbations Nonlinear Analysis, TMA 29 12311236 .

  • [9] Liu, Zhenhai, Shisheng, Zhang 1998 On the degree theory for multivalued (S+) type mappings Appl. Math. Mech. 19 11411149 .

  • [10] Liu, Zhenhai 2002 Existence for implicit differential equations with nonmonotone perturbations Israel J. Math. 129 363372 .

  • [11] Liu, Zhenhai 2010 Anti-periodic solutions to nonlinear evolution equations J. Funct. Anal. 258 20262033 .

  • [12] Okochi, H. 1988 On the existence of periodic solutions to nonlinear abstract parabolic equations J. Math. Soc. Japan 40 541553 .

  • [13] Okochi, H. 1990 On the existence of anti-periodic solutions to a nonlinear evolution equation associated with odd subdifferential operators J. Funct. Anal. 91 246258 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14] Simon, L. 2000 On nonlinear hyperbolic functional differential equations Math. Nachr. 217 175186 .

  • [15] Simon, L. 2008 On nonlinear systems consisting of different types of differential equations Periodica Math. Hungar. 56 143156 .

  • [16] Simon, L. 2007 On a system with a singular parabolic equation Folia FSN Univ. Masarykianae Brunensis, Math. 16 149156.

  • [17] Zeidler, E. 1990 Nonlinear Functional Analysis and Its Applications IIA and IIB Springer New York.

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0