View More View Less
  • 1 Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal 462051, M.P., India
Restricted access

Abstract

The object of the present work is to obtain a necessary condition for the existence of weakly symmetric and weakly Ricci-symmetric Sasakian manifolds admitting a quarter-symmetric metric connection.

  • [1] Agashe, Nirmala S., Chafle, Mangala R. 1992 A semi-symmetric non-metric connection on a Riemannian Manifold Indian J. Pure Appl. Math. 23 399409.

    • Search Google Scholar
    • Export Citation
  • [2] Blair, D. E. 1976 Contact Manifolds in Riemannian Geometry Lecture Notes in Math. 509 Springer.

  • [3] De, A. 2009 On almost pseudo-symmetric manifolds admitting a semi-symmetric non-metric connection Acta Math. Hungar. 125 183186 .

  • [4] De, U. C. and Gazi, A. K., On almost pseudo-symmetric manifolds, to appear in Ann. Univ. Sci. Budapest. Eötvös, Sect. Math.

  • [5] Golab, S. 1975 On semi-symmetric and quarter-symmetric linear connections Tensor (N.S.) 29 249254.

  • [6] Hayden, H. A. 1932 Subspaces of a space with torsion Proc. London Math. Soc. 34 2750 .

  • [7] Mishra, R. S., Pandey, S. N. 1980 On quarter-symmetric metric F-connections Tensor (N.S.) 34 17.

  • [8] Mondal, A. K., De, U. C. 2009 Some properties of a quarter-symmetric metric connection on a Sasakian manifold Bull. Math. Analysis Appl. 1 99108.

    • Search Google Scholar
    • Export Citation
  • [9] Rastogi, S. C. 1978 On quarter-symmetric metric connection C.R. Acad. Sci. Bulgar 31 811814.

  • [10] Rastogi, S. C. 1987 On quarter-symmetric metric connection Tensor (N.S.) 44 133141.

  • [11] Sasaki, S., Lectures Notes on Almost Contact Manifolds, Part I, Tohoku University (1975).

  • [12] Sular, S. 2010 Some properties of a Kenmotsu manifold with a semi-symmetric metric connection International Electronic Journal of Geometry 3 2434.

    • Search Google Scholar
    • Export Citation
  • [13] Tamássy, L., Binh, T. Q. 1992 On weakly symmetric and weakly projective symmetric Riemannian manifolds Colloq. Math. Soc. J. Bolyai 56 663670.

    • Search Google Scholar
    • Export Citation
  • [14] Tamássy, L., Binh, T. Q. 1993 On weak symmetries of Einstein and Sasakian manifolds Tensor (N.S.) 53 140148.

  • [15] Yano, K. 1970 On semi-symmetric connection Rev. Roumaine Math., Pure Appl. Math. 15 15791586.

  • [16] Yano, K., Imai, T. 1982 Quarter-symmetric metric connections and their curvature tensors Tensor (N.S.) 38 1318.

  • [17] Yano, K., Kon, M. 1984 Structures on Manifolds Series in Pure Mathematics 3 World Scientific Publishing Co. Singapore.

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 1 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 1 0 0
Nov 2021 0 0 0