View More View Less
  • 1 Department of Mathematics, University of Zagreb, Bijenička 30, P.O. Box 335, 10002 Zagreb, Croatia
Restricted access

Abstract

The problem of representability of quadratic functionals (acting on modules over unital complex ∗-algebras), by sesquilinear forms, is generalized by weakening the homogeneity equation. The corresponding representation theorem can be considered as a generalization of (the original form of) the classical Jordan–von Neumann characterization of complex inner product spaces.

  • [1] Brešar, M. 2004 Commuting maps: a survey Taiwanese J. Math. 8 361397.

  • [2] Brešar, M. 2005 Jordan derivations revisited Math. Proc. Camb. Phil. Soc. 139 411425 .

  • [3] Ilišević, D. 2005 Quadratic functionals on modules over ∗-rings Studia Sci. Math. Hungar. 42 95105.

  • [4] Ilišević, D. 2005 Quadratic functionals on modules over complex Banach ∗-algebras with an approximate identity Studia Math. 171 103123 .

  • [5] Ilišević, D., On quadratic functionals: from ∗-rings to a class of Banach ∗-algebras, in: Functional Analysis VIII, Proceedings of the Postgraduate School and Conference held at the Inter-University Centre (Dubrovnik, Croatia, 15–22 June 2003), University of Aarhus, Department of Mathematical Sciences, Aarhus, pp. 110115.

    • Search Google Scholar
    • Export Citation
  • [6] Jordan, P., Neumann von, J. 1935 On inner products in linear, metric spaces Ann. of Math. 36 719723 .

  • [7] Kurepa, S. 1964 The Cauchy functional equation and scalar product in vector spaces Glasnik Mat.-Fiz. i Astr. 19 2336.

  • [8] Kurepa, S. 1965 Quadratic and sesquilinear functionals Glasnik Mat.-Fiz. i Astr. 20 7992.

  • [9] Kurepa, S. 1987 Quadratic and sesquilinear forms. Contributions to characterizations of inner product spaces Functional Analysis II Dubrovnik 1985 Lecture Notes in Math. 1242 Springer Berlin 4376 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [10] Šemrl, P. 1986 On quadratic and sesquilinear functionals Aequationes Math. 31 184190 .

  • [11] Šemrl, P. 1988 On quadratic functionals Bull. Austral. Math. Soc. 37 2728 .

  • [12] Šemrl, P. 1993 Quadratic and quasi-quadratic functionals Proc. Amer. Math. Soc. 119 11051113.

  • [13] Vukman, J. 1987 Some functional equations in Banach algebras and an application Proc. Amer. Math. Soc. 100 133136 .

  • [14] Zalar, B. 1995 Jordan–von Neumann theorem for Saworotnow’s generalized Hilbert space Acta Math. Hungar. 69 301325 .

  • [15] Zalar, B. 1997 Jordan ∗-derivation pairs and quadratic functionals on modules over ∗-rings Aequationes Math. 54 3143 .

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 1 0 0
Aug 2021 0 0 0
Sep 2021 1 0 0
Oct 2021 1 0 0
Nov 2021 0 0 0