View More View Less
  • 1 Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
Restricted access

Abstract

We study mappings that generate bounded composition operators in weighted Sobolev spaces on Carnot groups. A complete analytical description of these mappings is given in terms of integrability of distortion of mappings in weighted Lebesgue spaces. We define weighted Sobolev mappings and study their connection with ACL-mappings. As an application we obtain weighted Sobolev type embedding theorems on Carnot groups.

  • [1] Chernikov, V. M., Vodop’yanov, S. K. 1996 Sobolev spaces and hypoelliptic equations. I Siberian Adv. Math. 6 2767.

  • [2] David, G., Semmes, S. 1990 Strong A -weights, Sobolev inequalities and quasiconformal mappings Lecture Notes in Pure and Appl. Math. 122 101111.

    • Search Google Scholar
    • Export Citation
  • [3] Federer, H. 1969 Geometric Measure Theory Springer-Verlag Berlin.

  • [4] Folland, G. B., Stein, E. M. 1982 Hardy Spaces on Homogeneous Groups Princeton Univ. Press Princeton.

  • [5] Franchi, B., Serapioni, R., Serra Cassano, F. 1997 Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields Bollettino U.M.I. 63 83117.

    • Search Google Scholar
    • Export Citation
  • [6] Gol’dshtein, V., Gurov, L. 1994 Applications of change of variables operators for exact embedding theorems Integral Equations Operator Theory 19 124 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [7] Gol’dshtein, V., Gurov, L., Romanov, A. S. 1995 Homeomorphisms that induce monomorphisms of Sobolev spaces Israel J. Math. 91 3160 .

  • [8] Gol’dshtein, V. M., Romanov, A. S. 1984 On mappings preserving the Sobolev spaces Siberian Math. J. 25 5561.

  • [9] Gol’dshtein, V., Ukhlov, A. 2009 Weighted Sobolev spaces and embedding theorems Trans. Amer. Math. Soc. 361 38293850 .

  • [10] Gol’dshtein, V., Ukhlov, A. 2010 About homeomorphisms that induce composition operators on Sobolev spaces Complex Variables and Elliptic Equations 55 833845 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [11] Gol’dshtein, V. M., Vodop’yanov, S. K. 1975 Lattice isomorphisms of the space and quasiconformal mappings Siberian Math. J. 16 224246.

    • Search Google Scholar
    • Export Citation
  • [12] Gol’dshtein, V. M., Vodop’yanov, S. K. 1976 Functional characteristics of quasiisometric mappings Siberian Math. J. 17 768773.

  • [13] Heinonen, J., Koskela, P. 1993 Sobolev mappings with integrable dilatation Arch. Rat. Mech. Anal. 125 8197 .

  • [14] Holopainen, I., Pankka, P. 2004 Mappings of finite distortion: global homeomorphism theorem Ann. Acad. Sci. Fenn. Math. 29 5980.

  • [15] Iwaniec, T., Koskela, P., Martin, G. 2001 Mappings of finite distortion: Monotonicity and continuity Invent. Math. 114 507531 .

  • [16] Iwaniec, T., Koskela, P., Martin, G. 2002 Mappings of BMO-distortion and Beltrami type operators J. Anal. Math. 88 337381 .

  • [17] Iwanec, T., Šverák, V. 1993 On mappings with integrable dilatation Proc. Amer. Math. Soc. 118 181188 .

  • [18] Kauhanen, J., Koskela, P., Malý, J. 2001 Mappings of finite distortion: Discreteness and openness Arch. Rat. Mech. Anal. 160 135151 .

  • [19] Kauhanen, J., Koskela, P., Malý, J. 2001 Mappings of finite distortion: Condition N Michigan Math. J. 49 169181 .

  • [20] Kauhanen, J., Koskela, P., Malý, J. 2003 Mappings of finite distortion: Sharp Orlicz-conditions Rev. Mat. Iberoamericana 19 857872.

    • Search Google Scholar
    • Export Citation
  • [21] Kufner, A. 1980 Weighted Sobolev Spaces Teubner-Texte für Mathematik Leipzig.

  • [22] Manfredi, J., Villamor, E. 1995 Mappings with integrable dilatation in higher dimensions Bull. Amer. Math. Soc. 32 235240 .

  • [23] Markina, I. G. 1990 A change of variable preserving the differential properties of functions Siberian Math. J. 31 7384.

  • [24] Martio, O., Ryazanov, V., Srebro, U., Yakubov, E. 2005 On Q-homeomorphisms Ann. Acad. Sci. Fenn. Math. 30 4969.

  • [25] Maz’ya, V. G., Shaposhnikova, T. O. 1986 Multipliers in Spaces of Differentiable Functions Leningrad Univ. Press. Leningrad.

  • [26] Mostow, G. D. 1968 Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms Inst. Hautes Etudes Sci. Publ. Math. 34 53104 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [27] Pansu, P. 1989 Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un Ann. Math. 129 160 .

  • [28] Reshetnyak, Yu. G. 1982 Space Mappings with Bounded Distortion Nauka Novosibirsk.

  • [29] Reshetnyak, Yu. G. 1997 Sobolev-type classes of functions with values in a metric space Siberian Math. J. 38 657675 .

  • [30] Riesz, F. 1909 Sur les operations fonctionelles lineaires C.R. Acad. Sci. Paris 149 974977.

  • [31] Ryazanov, V., Srebro, U., Yakubov, E. 2001 BMO-quasiconformal mappings J. Anal. Math. 83 120 .

  • [32] Ukhlov, A. 1993 On mappings generating the embeddings of Sobolev spaces Siberian Math. J. 34 165171 .

  • [33] Ukhlov, A., Vodop’yanov, S. K. 2008 Mappings associated with weighted Sobolev spaces, Complex analysis and dynamical systems III Contemporary Mathematics 455 369382.

    • Search Google Scholar
    • Export Citation
  • [34] Ukhlov, A., Vodop’yanov, S. K. 2010 Mappings with bounded (P,Q)-distortion on Carnot groups Bull. Sci. Math. 134 605634 .

  • [35] Väsälä J, J. 1971 Lectures on n-Dimensional Quasiconformal Mappings Springer-Verlag Berlin.

  • [36] Vodop’yanov, S. K. 1988 The Taylor Formula and Function Spaces Novosibirsk Univ. Press Novosibirsk.

  • [37] Vodop’yanov, S. K. 1999 Mappings with bounded distortion and with finite distortion on Carnot groups Siberian Math. J. 40 764804 .

  • [38] Vodop’yanov, S. K. 2000 Topological and geometric properties of mappings with an integrable Jacobian in Sobolev classes. I Siberian Math. J. 41 1939 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [39] Vodop’yanov, S. K. 2000 -Differentiability on Carnot groups in different topologies and related topics Proc. Analysis and Geometry Sobolev Institute Press Novosibirsk 603670.

    • Search Google Scholar
    • Export Citation
  • [40] Vodop’yanov, S. K., Ukhlov, A. D. 1996 Approximately differentiable transformations and change of variables on nilpotent groups Siberian Math. J. 37 7980 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [41] Vodop’yanov, S. K., Ukhlov, A. D. 1998 Sobolev spaces and (P,Q)-quasiconformal mappings of Carnot groups Siberian Math. J. 39 665682 .

  • [42] Vodop’yanov, S. K., Ukhlov, A. D. 2002 Superposition operators in Sobolev spaces Russian Mathematics (Iz. VUZ) 46 1133.

  • [43] Vodop’yanov, S. K., Ukhlov, A. 2004 Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I Siberian Adv. Math. 14 78125.

    • Search Google Scholar
    • Export Citation
  • [44] Vodop’yanov, S. K., Ukhlov, A. 2005 Set functions and their applications in the theory of Lebesgue and Sobolev spaces. II Siberian Adv. Math. 15 91125.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 0 0 0
Nov 2020 1 0 0
Dec 2020 0 0 0
Jan 2021 1 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0