View More View Less
  • 1 Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland
  • | 2 Jan Kochanowski University, Kielce, Poland
Restricted access

Abstract

We derive differential relations between spherical and solid means of continuous functions. Next we use the relations to give inductive proofs of the mean value property for polyharmonic functions and its converse in arbitrary dimension.

  • [1] Aronszajn, N., Creese, T. M., Lipkin, L. J. 1983 Polyharmonic Functions Clarendon Press Oxford.

  • [2] Axler, S., Bourdon, P., Ramey, W. 1992 Harmonic Function Theory Graduate Texts in Mathematics 137 Springer-Verlag New York.

  • [3] Beckenbach, E. F., Reade, M. 1945 Mean values and harmonic polynomials Trans. AMS 51 240245.

  • [4] Bojanov, B. 2001 An extension of the Pizzetti formula for polyharmonic functions Acta Math. Hungar. 91 99113 .

  • [5] Bramble, J. H., Payne, L. E. 1966 Mean value theorems for polyharmonic functions Amer. Math. Monthly 73 124127 .

  • [6] Courant, R., Hilbert, D. 1962 Methods of Mathematical Physics II Interscience Publishers New York.

  • [7] Friedman, A. 1957 Mean-values and polyharmonic polynomials Michigan Math. J. 4 6774 .

  • [8] Ghermanesco, M. 1934 Sur les moyennes successives des fonctions Bull. Soc. Math. France 62 245264.

  • [9] Ghermanescu, M. 1944 Sur les moyennes successives des fonctions Math. Ann. 119 288320 .

  • [10] Nicolesco, M., Les Fonctions Polyharmoniques, Hermann & Cie Éditeurs (Paris, 1936).

  • [11] Pizzetti, P., Sulla media dei valori che una funzione dei punti dello spazio assume alla superficie di una sfera, Rendiconti Lincei, serie V, 18 (1909), 182185.

    • Search Google Scholar
    • Export Citation
  • [12] Pizzetti, P., Sul significato geometrico del secondo parametro differenziale di una funzione sopra una superficie qualunque, Rendiconti Lincei, serie V, 18 (1909), 309316.

    • Search Google Scholar
    • Export Citation
  • [13] Sbrana, F., Sopra una proprietá caratteristica delle funzioni poliarmoniche e delle soluzioni dell’equazione delle membrane vibranti, Rendiconti Lincei, serie VI, 1 (1925), 369371.

    • Search Google Scholar
    • Export Citation

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 1 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0