View More View Less
  • 1 Institute of Mathematics, University of Debrecen, H-4010 Debrecen, P.O.B. 12, Hungary
Restricted access

Abstract

The main results of the paper generalize the following classical theorem to the setting of line element D-manifolds: the automorphisms of a covariant derivative on a manifold are exactly the affinities that leave its torsion invariant.

  • [1] Diaz, J.-G., Etude des tenseurs de courbure en géométrie finslérienne, Thèse de 3ème cycle, 118 (1972).

  • [2] Hashiguchi, M. 1958 On parallel displacements in Finsler spaces J. Math. Soc. Japan 10 365379 .

  • [3] Lang, S. 2001 Fundamentals of Differential Geometry Springer-Verlag New York.

  • [4] Lovas, R. L., Pék, J. and Szilasi, J., Ehresmann connections, metrics and good metric derivatives, Advanced Studies in Pure Mathematics, 48 (2007), Finsler Geometry, Sapporo 2005 – In Memory of Makoto Matsumoto, pp. 263–308.

    • Search Google Scholar
    • Export Citation
  • [5] Pék, J., Szilasi, J. 2009 Automorphisms of Ehresmann connections Acta Math. Hungar. 123 379395 .

  • [6] Szilasi, J. 2003 A setting for spray and finsler geometry Antonelli, P. L. (eds.) Handbook of Finsler Geometry 2 Kluwer Academic Publishers Dordrecht 11821426.

    • Search Google Scholar
    • Export Citation
  • [7] Szilasi, J. 2008 Calculus along the tangent bundle projection and projective metrizability Differential Geometry and its Applications – Proceedings of the 10th International Conference on DGA2007 World Scientific Singapore 527546.

    • Search Google Scholar
    • Export Citation
  • [8] Varga, O. 1949 Über affinzusammenhängende Mannigfaltigkeiten von Linienelementen insbesondere deren Äquivalenz Publ. Math. Debrecen 1 717.

    • Search Google Scholar
    • Export Citation
  • [9] Vilms, J. 1970 Totally geodesic maps J. Differential Geometry 4 7379.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 0 0 0
Nov 2020 0 2 0
Dec 2020 0 0 0
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0