Authors:
Kamen G. Ivanov Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev St., 1113 Sofia, Bulgaria

Search for other papers by Kamen G. Ivanov in
Current site
Google Scholar
PubMed
Close
and
Parvan E. Parvanov Department of Mathematics and Informatics, University of Sofia, 5 James Bourchier Blvd., 1164 Sofia, Bulgariae-mail: pparvan@fmi.uni-sofia.bg

Search for other papers by Parvan E. Parvanov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The uniform weighted approximation errors of Baskakov-type operators are characterized for weights of the form for γ0,γ∊[−1,0]. Direct and strong converse theorems are proved in terms of the weighted K-functional.

  • [1] Agrawal, P. N., Thamer, K. J. 1998 Approximation of unbounded functions by a new sequence of linear positive operators J. Math. Anal. Appl. 225 600672 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2] Baskakov, V. A. 1957 An example of a sequence of the linear positive operators in the space of continuous functions Dokl. Akad. Nauk SSSR 113 249251.

    • Search Google Scholar
    • Export Citation
  • [3] Derriennic, M. M. 1981 Sur l’approximation de functions integrable sur [0,1] par des polynomes de Bernstein modifies J. Approx. Theory 31 325343 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4] Ditzian, Z., Ivanov, K. G. 1991 Strong converse inequalities J. d‘Analyse Mathematique 61 61111 .

  • [5] Durrmeyer, J. L., Une formule d’inversion de la transformée de Laplace: Applications à la théorie des moments, Thèse de 3e cycle. Faculté des Sciences de l’Université de Paris (1967).

    • Search Google Scholar
    • Export Citation
  • [6] Finta, Z. 2005 On converse approximation theorems J. Math. Anal. Appl. 312 159180 .

  • [7] Finta, Z. 2006 Direct approximation theorems for discrete type operators J. Inequalities in Pure and Applied Math. 7 121.

  • [8] Goodman, T. N. T., Sharma, A. 1987 A modified Bernstein–Shoenberg operator Proc. of Conference on Constructive Theory of Functions Varna’87 Publ. House of Bulg. Acad. of Sci. Sofia 166173.

    • Search Google Scholar
    • Export Citation
  • [9] Gupta, V., Agrawal, P. N. 2007 Rate of convergence for certain Baskakov Durrmeyer type operators Analele Universităţii Oradea, Fasc. Matematica XIV 3339.

    • Search Google Scholar
    • Export Citation
  • [10] Gupta, V., Noor, M. A., Beniwal, M. S., Gupta, M. K. 2006 On simultaneous approximation for certain Baskakov Durrmeyer type operators J. Inequalities Pure Appl. Math. 7 133.

    • Search Google Scholar
    • Export Citation
  • [11] Ivanov, K. G., Parvanov, P. E. 2009 Weighted approximation by the Goodman–Sharma Operators East J. Approx. 15 473486.

  • [12] Lupas, A. 1967 Some properties of the linear positive operators (I) Mathematica (Cluj) 9 7783.

  • [13] Sahai, A., Prasad, G. 1985 On simultaneous approximation by modified Lupas operators J. Approx. Theory 45 122128 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 34 0 0
Jul 2024 3 0 0
Aug 2024 8 0 0
Sep 2024 48 0 0
Oct 2024 35 0 0
Nov 2024 39 0 0
Dec 2024 2 0 0