View More View Less
  • 1 Institute of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, P. R. China
Restricted access

Abstract

Let fL2π be a real-valued even function with its Fourier series , and let Sn(f,x) be the nth partial sum of the Fourier series, n≧1. The classical result says that if the nonnegative sequence {an} is decreasing and , then if and only if . Later, the monotonicity condition set on {an} is essentially generalized to MVBV (Mean Value Bounded Variation) condition. Very recently, Kórus further generalized the condition in the classical result to the so-called GM7 condition in real space. In this paper, we give a complete generalization to the complex space.

  • [1] Kórus, P. 2010 Remarks on the uniform and L1-convergence of trigonometric series Acta Math. Hungar. 128 369380 .

  • [2] Tikhonov, S. 2008 On L1-convergence of Fourier series J. Math. Anal. Appl. 347 416427 .

  • [3] Xie, T. F., Zhou, S. P. 1996 L1-approximation of Fourier series of complex valued functions Proc. Royal Soc. Edinburg Sect. A 126 343353.

    • Search Google Scholar
    • Export Citation
  • [4] Yu, D. S., Zhou, P., Zhou, S. P. 2009 On L1-convergence of Fourier series under MVBV condition Canad. Math. Bull. 52 627636 .

  • [5] Zhou, S. P., A remark on L1-convergence of Fourier series under MVBV condition, Adv. Math. (Beijing), to appear.

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0