View More View Less
  • 1 Department of Computer Science, University of Debrecen, Number Theory Research Group, Hungarian Academy of Sciences and University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary
  • 2 Institute for Analysis and Computational Number Theory, Graz University of Technology, Steyrergasse 30/IV, A-8010 Graz, Austria
Restricted access

Abstract

We consider biquadratic number fields whose maximal orders have power integral bases consisting of units. We prove an effective and efficient criteria to decide whether the maximal order of a biquadratic field has a unit power integral basis or not. In particular we can determine all trivial biquadratic fields whose maximal orders have a unit power integral basis.

  • [1] Ashrafi, N., Vámos, P. 2005 On the unit sum number of some rings Quarterly J. Math. 56 112 .

  • [2] Baker, A. 1969 Bounds for the solutions of the hyperelliptic equation Proc. Cambridge Philos. Soc. 65 439444 .

  • [3] Belcher, P. 1974 Integers expressible as sums of distinct units Bull. Lond. Math. Soc. 6 6668 .

  • [4] Bennett, M. A. 1998 On the number of solutions of simultaneous Pell equations J. Reine Angew. Math. 498 173199 .

  • [5] Bennett, M. A., Cipu, M., Mignotte, M., Okazaki, R. 2006 On the number of solutions of simultaneous Pell equations. II Acta Arith. 122 407417 .

  • [6] Chen, J. H., Voutier, P. 1997 Complete solution of the Diophantine equation X 2+1=dY 4 and a related family of quartic Thue equations J. Number Theory 62 7199 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [7] Cipu, M., Mignotte, M. 2007 On the number of solutions to systems of Pell equations J. Number Theory 125 356392 .

  • [8] Erdős, P. 1953 Arithmetical properties of polynomials J. London Math. Soc. 28 416425 .

  • [9] Filipin, A., Tichy, R., Ziegler, V. 2008 The additive unit structure of pure quartic complex fields Funct. Approx. Comment. Math. 39 113131.

    • Search Google Scholar
    • Export Citation
  • [10] Gaál, I. 2000 Solving index form equations in fields of degree 9 with cubic subfields J. Symbolic Comput. 30 181193 .

  • [11] Gaál, I. 2002 Diophantine Equations and Power Integral Bases Birkhäuser Boston Inc. Boston, MA .

  • [12] Gaál, I., Olajos, P., Pohst, M. 2002 Power integral bases in orders of composite fields Experiment. Math. 11 8790.

  • [13] Gaál, I., Pethő, A., Pohst, M. 1995 On the resolution of index form equations in biquadratic number fields. III. The bicyclic biquadratic case J. Number Theory 53 100114 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14] Gaál, I., Schulte, N. 1989 Computing all power integral bases of cubic fields Math. Comp. 53 689696 .

  • [15] Gras, M.-N., Tanoé, F. 1995 Corps biquadratiques monogènes Manuscripta Math. 86 6379 .

  • [16] Győry, K. 1983 Bounds for the solutions of norm form, discirminant form and index form equations in finitely generated integral domains Acta Math. Hungar. 42 4580 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [17] Győry, K. 1976 Sur les polynômes à coefficients entiers et de discriminant donné. III Publ. Math. Debrecen 23 141165.

  • [18] Jarden, M., Narkiewicz, W. 2007 On sums of units Monatsh. Math. 150 327336 .

  • [19] Ljunggren, W., Zur Theorie der Gleichung x 2+1=Dy 4, Avh. Norske Vid. Akad. Oslo. I., 27 (1942).

  • [20] Nagell, T. 1954 On a special class of Diophantine equations of the second degree Ark. Mat. 3 5165 .

  • [21] Tichy, R., Ziegler, V. 2007 Units generating the ring of integers of complex cubic fields Coll. Math. 109 7183 .

  • [22] Williams, K. S. 1970 Integers of biquadratic fields Canad. Math. Bull. 13 519526 .

  • [23] Ziegler, V., The additive S-unit structure of quadratic fields, to appear in Int. J. Number Theory..

  • [24] Ziegler, V. 2008 The additive unit structure of complex biquadratic fields Glas. Mat. Ser. III 43 293307 .

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 0 0
Jul 2020 0 0 0
Aug 2020 1 0 0
Sep 2020 2 0 0
Oct 2020 0 0 0
Nov 2020 0 0 0
Dec 2020 0 0 0