We study the thermoelastic system in a domain with moving boundary, which was obtained when, instead of the Fourier’s law for the heat flux relation, we followed the linearized model proposed by Coleman and Gurtin [3] and Gurtin and Pipkin [6] about the memory theory of heat conduction. We show the existence, uniqueness and exponential decay rate of global regular solutions.
[1] Avalos, G., Lasiecka, I. 1997 Exponential stability of thermoelastic system without mechanical dissipation Rend. Inst. Mat. Univ. Trieste Suppl. XXVIII 1–28.
[2] Avalos, G., Lasiecka, I. 1998 Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation SIAM J. Math. Anal. 29 155–182 .
[3] Coleman, B. D., Gurtin, M. E. 1967 Equipresence and constitutive equations for rigid heat conductors Z. Angew. Math. Phys. 18 199–208 .
[4] Dafermos, C. M. 1968 On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity Arch. Rational Mech. Anal. 29 241–271 .
[5] Fatori, L. H., Muñoz Rivera, J. E. 2001 Energy decay for hyperbolic thermoelastic system of memory type Quart. Appl. Math. VII 557–578.
[6] Gurtin, M. E., Pipkin, A. C. 1968 A general theory of heat conduction with finite wave speeds Arch. Rat. Mech. Anal. 31 113–126 .
[7] Lions, J. L. 1969 Quelques mèthodes de résolution de problèmes aux limites non linéaires Dunod Gauthier Villars Paris.
[8] Lions, J. L., Magenes, E. 1972 Non-Homogeneous Boundary Value Problem and Applications Springer-Verlag New York.
[9] Kawashima, S. and Shibata, Y., On the Neumann problem of one-dimensional nonlinear thermoelasticity with time-independent external forces, Czechoslovak Math. J., (1994), 1–31.
[10] Kim, J. U. 1992 On the energy decay of a linear thermoelastic bar and plate SIAM J. Math. Anal. 23 889–899 .
[11] Komornik, V. 1994 Exact Controllability and Stabilization. The Multiplier Method John Wiley and Sons-Masson Paris.
[12] Muñoz Rivera, J. E. 1992 Energy decay rates in linear thermoelasticity Funkcialaj Ekvacioj 35 19–30.
[13] Muñoz Rivera, J. E. 1994 Asymptotic behaviour in inhomogeneous linear thermoelasticity Applicable Analysis 53 55–66 .
[14] Ponce, G., Racke, R. 1990 Global existence small solutions to the initial value problem for nonlinear thermoelasticity J. Differential Equations 87 70–83 .
[15] Pereira, D. C., Menzala, G. P. 1989 Exponential decay of solutions to a coupled system of equations of linear thermoelasticity Comp. Appl. Math. 76 193–204.
[16] Racke, R. 1987 On the time-asymptotic behaviour of solutions in thermoelasticity Proc. Roy. Soc. Edinburgh 107 289–298.
[17] Racke, R. 1992 Lectures on nonlinear evolution equations. Initial value problems Aspect of Mathematics Friedr. Viewegand Sohn Braunschweig/Wiesbaden.
[18] Racke, R., Shibata, Y. 1991 Global smooth solution and asymptotic stability in one dimensional nonlinear thermoelasticity Arch. Rat. Mech. Anal. 116 1–34 .
[19] Racke, R., Shibata, Y., Zheng, S. 1993 Global solvability and exponential stability in one dimensional nonlinear thermoelasticity Quart. Appl. Math. 51 751–763.
[20] Santos, M. L., Rocha, M. P. C., Braga, P. L. O. 2007 Global solvability and asymptotic behavior for a nonlinear coupled system of viscoelastic waves with memory in a noncylindrical domain J. Math. Analysis and Applications 325 1077–1094 .
[21] Slemrod, M. 1981 Global existence, uniqueness and asymptotic stability of classical smooth solution in one dimensional non linear thermoelasticity Arch. Rat. Mech. Math. 76 97–133.
[22] Song, J., Racke, R., Muñoz Rivera, J. E. 1998 Asymptotic stability and global existence in thermoelasticity with symmetry Quart. Appl. Math. LVI 259–276.
[23] Staffans, O. L. 1980 On a nonlinear hyperbolic Volterra equations SIAM J. Math. Anal. 11 793–812 .