Author:
M. L. Santos Faculdade de Matemática-Programa de Pós-Graduação em Matemática e Estatística, Universidade Federal do Pará, Campus Universitário do Guamã, Rua Augusto Corrêa 01, Cep 66075-110 Pará, Brazil

Search for other papers by M. L. Santos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We study the thermoelastic system in a domain with moving boundary, which was obtained when, instead of the Fourier’s law for the heat flux relation, we followed the linearized model proposed by Coleman and Gurtin [3] and Gurtin and Pipkin [6] about the memory theory of heat conduction. We show the existence, uniqueness and exponential decay rate of global regular solutions.

  • [1] Avalos, G., Lasiecka, I. 1997 Exponential stability of thermoelastic system without mechanical dissipation Rend. Inst. Mat. Univ. Trieste Suppl. XXVIII 128.

    • Search Google Scholar
    • Export Citation
  • [2] Avalos, G., Lasiecka, I. 1998 Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation SIAM J. Math. Anal. 29 155182 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3] Coleman, B. D., Gurtin, M. E. 1967 Equipresence and constitutive equations for rigid heat conductors Z. Angew. Math. Phys. 18 199208 .

  • [4] Dafermos, C. M. 1968 On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity Arch. Rational Mech. Anal. 29 241271 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [5] Fatori, L. H., Muñoz Rivera, J. E. 2001 Energy decay for hyperbolic thermoelastic system of memory type Quart. Appl. Math. VII 557578.

    • Search Google Scholar
    • Export Citation
  • [6] Gurtin, M. E., Pipkin, A. C. 1968 A general theory of heat conduction with finite wave speeds Arch. Rat. Mech. Anal. 31 113126 .

  • [7] Lions, J. L. 1969 Quelques mèthodes de résolution de problèmes aux limites non linéaires Dunod Gauthier Villars Paris.

  • [8] Lions, J. L., Magenes, E. 1972 Non-Homogeneous Boundary Value Problem and Applications Springer-Verlag New York.

  • [9] Kawashima, S. and Shibata, Y., On the Neumann problem of one-dimensional nonlinear thermoelasticity with time-independent external forces, Czechoslovak Math. J., (1994), 131.

    • Search Google Scholar
    • Export Citation
  • [10] Kim, J. U. 1992 On the energy decay of a linear thermoelastic bar and plate SIAM J. Math. Anal. 23 889899 .

  • [11] Komornik, V. 1994 Exact Controllability and Stabilization. The Multiplier Method John Wiley and Sons-Masson Paris.

  • [12] Muñoz Rivera, J. E. 1992 Energy decay rates in linear thermoelasticity Funkcialaj Ekvacioj 35 1930.

  • [13] Muñoz Rivera, J. E. 1994 Asymptotic behaviour in inhomogeneous linear thermoelasticity Applicable Analysis 53 5566 .

  • [14] Ponce, G., Racke, R. 1990 Global existence small solutions to the initial value problem for nonlinear thermoelasticity J. Differential Equations 87 7083 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [15] Pereira, D. C., Menzala, G. P. 1989 Exponential decay of solutions to a coupled system of equations of linear thermoelasticity Comp. Appl. Math. 76 193204.

    • Search Google Scholar
    • Export Citation
  • [16] Racke, R. 1987 On the time-asymptotic behaviour of solutions in thermoelasticity Proc. Roy. Soc. Edinburgh 107 289298.

  • [17] Racke, R. 1992 Lectures on nonlinear evolution equations. Initial value problems Aspect of Mathematics Friedr. Viewegand Sohn Braunschweig/Wiesbaden.

    • Search Google Scholar
    • Export Citation
  • [18] Racke, R., Shibata, Y. 1991 Global smooth solution and asymptotic stability in one dimensional nonlinear thermoelasticity Arch. Rat. Mech. Anal. 116 134 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [19] Racke, R., Shibata, Y., Zheng, S. 1993 Global solvability and exponential stability in one dimensional nonlinear thermoelasticity Quart. Appl. Math. 51 751763.

    • Search Google Scholar
    • Export Citation
  • [20] Santos, M. L., Rocha, M. P. C., Braga, P. L. O. 2007 Global solvability and asymptotic behavior for a nonlinear coupled system of viscoelastic waves with memory in a noncylindrical domain J. Math. Analysis and Applications 325 10771094 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [21] Slemrod, M. 1981 Global existence, uniqueness and asymptotic stability of classical smooth solution in one dimensional non linear thermoelasticity Arch. Rat. Mech. Math. 76 97133.

    • Search Google Scholar
    • Export Citation
  • [22] Song, J., Racke, R., Muñoz Rivera, J. E. 1998 Asymptotic stability and global existence in thermoelasticity with symmetry Quart. Appl. Math. LVI 259276.

    • Search Google Scholar
    • Export Citation
  • [23] Staffans, O. L. 1980 On a nonlinear hyperbolic Volterra equations SIAM J. Math. Anal. 11 793812 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2024 13 1 0
Apr 2024 13 0 0
May 2024 28 0 0
Jun 2024 33 0 0
Jul 2024 21 0 0
Aug 2024 8 0 0
Sep 2024 5 0 0