Author: Ke-Ang Fu 1
View More View Less
  • 1 School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
Restricted access

Abstract

Let {X,Xn; n≧0} be a sequence of identically distributed ψ-mixing dependent random variables taking values in a type 2 Banach space B with topological dual B. Considering the geometrically weighted series for 0<β<1, a general law of the iterated logarithm for ξ(β) is obtained without second moment.

  • [1] Berkes, I., Philipp, W. 1979 Approximation theorems for independent and weakly dependent random vectors Ann. Probab. 7 2954 .

  • [2] Bovier, A., Picco, P. 1993 A law of the iterated logarithm for random geometric series Ann. Probab. 21 168184 .

  • [3] Dehling, H., Philipp, W. 1982 Almost sure invariance principles for weakly dependent vector-valued random variables Ann. Probab. 10 689701 .

  • [4] Einmahl, U., Li, D. L. 2005 Some results on two-sided LIL behavior Ann. Probab. 33 16011624 .

  • [5] Einmahl, U., Li, D. L. 2008 Characterization of LIL behavior in Banach space Trans. Amer. Math. Soc. 360 66776693 .

  • [6] Fu, K. A. 2010 LIL behavior for weakly dependent random variables in Banach spaces Acta Math. Hungar. 128 315327 .

  • [7] Huang, W. 2003 A law of the iterated logarithm for geometrically weighted series of negatively associated random variables Statist. Probab. Lett. 63 133143 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [8] Kuelbs, J., Philipp, W. 1980 Almost sure invariance principles for partial sums of mixing B-valued random variables Ann. Probab. 8 10031036 .

  • [9] Peligrad, M. 1982 Invariance principles for mixing sequences of random variables Ann. Probab. 10 968981 .

  • [10] Philipp, W., Stout, W. 1975 Almost sure invariance principles for partial sums of weakly dependent random variables Memoirs of Amer. Math. Soc. 2 161.

    • Search Google Scholar
    • Export Citation
  • [11] Shao, Q. M. 1993 Almost sure invariance principles for mixing sequences of random variables Stoch. Proc. Appl. 48 319334 .

  • [12] Picco, P., Vares, M. E. 1994 A law of the iterated logarithm for geometrically weighted martingale difference sequences J. Theor. Probab. 7 375415 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [13] Sharipov, O. Sh. 1998 Probabilistic characterization of Banach spaces by weakly dependent random elements Uzbek. Mat. Zh. 2 8691 (in Russian).

    • Search Google Scholar
    • Export Citation
  • [14] Sharipov, O. Sh. 2003 The law of the iterated logarithm for weakly dependent Hilbert space valued random variables Sib. Math. J. 44 11111126 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [15] Sharipov, O. Sh. 2005 The bounded law of the iterated logarithm for weakly dependent random variables with values in a type 2 Banach space Theor. Probab. Appl. 49 444457 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [16] Zhang, L. X. 1997 Strong approximation theorems for geometrically weighted random series and their applications Ann. Probab. 25 16211635 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [17] Zhang, L. X. 1997 A law of the iterated logarithm for geometrically weighted series of B-valued random variables Acta Sci. Math. (Szeged) 63 671688.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 0 0 0
Nov 2020 0 0 0
Dec 2020 0 0 0
Jan 2021 0 0 0
Feb 2021 1 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0