We obtain all solutions of the equation with c∊{±1,±2,±4}.
[1] Cao, Z. F. 1990 On the Diophantine equation Chinese Science Bulletin 35 492–494 (in Chinese).
[2] Dickson, L. E. 1920 History of the Theory of Numbers, II Carnegie Inst. Washington D. C. 36.
[3] Filaseta, M., Luca, F., Stânicâ, P., Underwood, R. G. 2007 Two Diophantine approaches to the irreucibility of certain trinomials Acta Arith. 128 149–156 .
[4] Lehmer, D. H. 1930 An extended theory of Lucas’ functions Ann. Math. 31 419–448 .
[5] Ljunggren, W. 1943 Some theorems on indeterminate equations of the form Norsk Mat. Tidsskr. 25 17–20.
[6] Luo, J. 1991 Extensions and applications on Störmer theory J. Sichuan University 28 469–474 (in Chinese).
[7] Sun, Q. and Yuan, P., On the Diophantine equatins (ax n−1)/(ax−1)=y 2 and (ax n+1)/(ax+1)=y 2, J. Sichuan University (1989), 20–24 (in Chinese).
[8] Walker, D. T. 1967 On the Diophantine equation mx 2−nY 2=±1 Amer. Math. Monthly 74 503–513 .
[9] Yuan, P. 1994 A new proposition of Pell equation and its applitions J. Changsha Railway University 12 79–84 (in Chinese).
[10] Yuan, P., Luo, J. 2001 On solutions of higher degree Diophantine equation J. Math. Res. & Expo. 21 99–102 (in Chinese).