View More View Less
  • 1 College of Mathematics and Information Science, Zhaoqing University, Zhaoqing 526061, P.R. China
  • 2 School of Mathematics, Huanan Normal University, Guangzhou 510631, P.R. China
Restricted access

Abstract

We obtain all solutions of the equation with c∊{±1,±2,±4}.

  • [1] Cao, Z. F. 1990 On the Diophantine equation Chinese Science Bulletin 35 492494 (in Chinese).

  • [2] Dickson, L. E. 1920 History of the Theory of Numbers, II Carnegie Inst. Washington D. C. 36.

  • [3] Filaseta, M., Luca, F., Stânicâ, P., Underwood, R. G. 2007 Two Diophantine approaches to the irreucibility of certain trinomials Acta Arith. 128 149156 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4] Lehmer, D. H. 1930 An extended theory of Lucas’ functions Ann. Math. 31 419448 .

  • [5] Ljunggren, W. 1943 Some theorems on indeterminate equations of the form Norsk Mat. Tidsskr. 25 1720.

  • [6] Luo, J. 1991 Extensions and applications on Störmer theory J. Sichuan University 28 469474 (in Chinese).

  • [7] Sun, Q. and Yuan, P., On the Diophantine equatins (ax n−1)/(ax−1)=y 2 and (ax n+1)/(ax+1)=y 2, J. Sichuan University (1989), 2024 (in Chinese).

    • Search Google Scholar
    • Export Citation
  • [8] Walker, D. T. 1967 On the Diophantine equation mx 2nY 2=±1 Amer. Math. Monthly 74 503513 .

  • [9] Yuan, P. 1994 A new proposition of Pell equation and its applitions J. Changsha Railway University 12 7984 (in Chinese).

  • [10] Yuan, P., Luo, J. 2001 On solutions of higher degree Diophantine equation J. Math. Res. & Expo. 21 99102 (in Chinese).

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 0 0
Jul 2020 0 0 0
Aug 2020 2 0 0
Sep 2020 0 0 0
Oct 2020 0 0 0
Nov 2020 1 2 0
Dec 2020 0 0 0