Authors:
Wenbin Guo Department of Mathematics, University of Science and Technology of China, Hefei 230026, P. R. Chinae-mail: wbguo@ustc.edu.cn
Department of Mathematics, Xuzhou Normal University, Xuzhou 221116, P. R. China

Search for other papers by Wenbin Guo in
Current site
Google Scholar
PubMed
Close
and
Alexander N. Skiba Department of Mathematics, Francisk Skorina Gomel State University, Gomel 246019, Belarus

Search for other papers by Alexander N. Skiba in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Let be a class of groups and G a finite group. We call a set Σ of subgroups of G a G-covering subgroup system for if whenever . Let p be any prime dividing |G| and P a Sylow p-subgroup of G. Then we write Σp to denote the set of subgroups of G which contains at least one supplement to G of each maximal subgroup of P. We prove that the sets Σp and Σp∪Σq, where qp, are G-covering subgroup systems for many classes of finite groups.

  • [1] Ballester-Bolinches, A., Ezquerro, L. M. 2006 Classes of Finite Groups Springer Dordrecht.

  • [2] Bianchi, M., Mauri, A. G., Hauck, P. 1986 On finite groups with nilpotent Sylow-normalizers Arch. Math. 47 193197 .

  • [3] Doerk, K., Hawkes, T. 1992 Finite Soluble Groups Walter de Gruyter Berlin – New York .

  • [4] Fedri, V., Serena, L. 1988 Finite soluble groups with supersoluble Sylow normalizers Arch. Math. 50 1118 .

  • [5] Guo, W., Shum, K. P., Skiba, A. N. 2003 G-covering subgroup systems for the classes of supersoluble and nilpotent groups Israel J. Math. 138 125138 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [6] Guo, W., Shum, K. P., Skiba, A. N. 2004 G-covering subgroup systems for the classes of p-supersoluble and p-nilpotent finite groups Siberian Math. J. 45 453442.

    • Search Google Scholar
    • Export Citation
  • [7] Guo, W. 2000 The Theory of Classes of Groups Science Press-Kluwer Academic Publishers Beijing–New York–Dordrecht–Boston–London.

    • Search Google Scholar
    • Export Citation
  • [8] Guo, W., Shum, K. P., Skiba, A. N. 2006 Criterions of supersolubility for products of supersoluble groups Publ. Math. Debrecen 68 433449.

    • Search Google Scholar
    • Export Citation
  • [9] Skiba, A. N. 2007 On weakly s-permutable subgroups of finite groups J. Algebra 315 192209 .

  • [10] Huppert, B. 1967 Endliche Gruppen I Springer-Verlag Berlin – Heidelberg – New York.

  • [11] Shemetkov, L. A., Skiba, A. N. 2009 On the -hypercentre of finite groups J. Algebra 322 21062117 .

  • [12] Wielandt, H. 1960 Über die Normalstrukture von mehrfach faktorisierbaren Gruppen B. Austral Math. Soc. 1 143146 .

  • [13] Weinstein, M. 1982 Between Nilpotent and Solvable Polygonal Publishing House.

  • [14] Gorenstein, D. 1968 Finite Groups Harper & Row Publishers.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 5 0 0
May 2024 28 0 0
Jun 2024 44 0 0
Jul 2024 3 0 0
Aug 2024 10 0 0
Sep 2024 16 0 0
Oct 2024 0 0 0