Let be a class of groups and G a finite group. We call a set Σ of subgroups of G a G-covering subgroup system for if whenever . Let p be any prime dividing |G| and P a Sylow p-subgroup of G. Then we write Σp to denote the set of subgroups of G which contains at least one supplement to G of each maximal subgroup of P. We prove that the sets Σp and Σp∪Σq, where q≠p, are G-covering subgroup systems for many classes of finite groups.
[1] Ballester-Bolinches, A., Ezquerro, L. M. 2006 Classes of Finite Groups Springer Dordrecht.
[2] Bianchi, M., Mauri, A. G., Hauck, P. 1986 On finite groups with nilpotent Sylow-normalizers Arch. Math. 47 193–197 .
[3] Doerk, K., Hawkes, T. 1992 Finite Soluble Groups Walter de Gruyter Berlin – New York .
[4] Fedri, V., Serena, L. 1988 Finite soluble groups with supersoluble Sylow normalizers Arch. Math. 50 11–18 .
[5] Guo, W., Shum, K. P., Skiba, A. N. 2003 G-covering subgroup systems for the classes of supersoluble and nilpotent groups Israel J. Math. 138 125–138 .
[6] Guo, W., Shum, K. P., Skiba, A. N. 2004 G-covering subgroup systems for the classes of p-supersoluble and p-nilpotent finite groups Siberian Math. J. 45 453–442.
[7] Guo, W. 2000 The Theory of Classes of Groups Science Press-Kluwer Academic Publishers Beijing–New York–Dordrecht–Boston–London.
[8] Guo, W., Shum, K. P., Skiba, A. N. 2006 Criterions of supersolubility for products of supersoluble groups Publ. Math. Debrecen 68 433–449.
[9] Skiba, A. N. 2007 On weakly s-permutable subgroups of finite groups J. Algebra 315 192–209 .
[10] Huppert, B. 1967 Endliche Gruppen I Springer-Verlag Berlin – Heidelberg – New York.
[11] Shemetkov, L. A., Skiba, A. N. 2009 On the -hypercentre of finite groups J. Algebra 322 2106–2117 .
[12] Wielandt, H. 1960 Über die Normalstrukture von mehrfach faktorisierbaren Gruppen B. Austral Math. Soc. 1 143–146 .
[13] Weinstein, M. 1982 Between Nilpotent and Solvable Polygonal Publishing House.
[14] Gorenstein, D. 1968 Finite Groups Harper & Row Publishers.