View More View Less
  • 1 Universidade de Brasilia, 70910-900 Brasilia, DF, Brazil
  • | 2 Univ. Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
Restricted access

Abstract

Convergence in Mallows distance is of particular interest when heavy-tailed distributions are considered. For 1≦α<2, it constitutes an alternative technique to derive central limit type theorems for non-Gaussian α-stable laws. In this note, we further explore the connection between Mallows distance and convergence in distribution. Conditions for their equivalence are presented.

  • [1] Barbosa, E. G., Dorea, C. C. Y. 2009 A note on the Lindeberg condition for convergence to stable laws in Mallows distance Bernoulli 15 922924 .

  • [2] Bickel, P. J., Freedman, D. A. 1981 Some asymptotic theory for the Bootstrap Annals of Statistics 9 11961217 .

  • [3] Bose, A., DasGupta, A., Rubin, H. 2002 A contemporary review and bibliography of infinitely divisible distributions and processes Sankhya: The Indian Journal of Statistics, series A 64 763819.

    • Search Google Scholar
    • Export Citation
  • [4] Feller, W. 1971 An Introduction to Probability Theory and Its Applications John Wiley New York.

  • [5] Hall, P., Heyde, C. C. 1980 Martingale Limit Theory and Its Applications Academic Press New York.

  • [6] Johnson, O., Samworth, R. 2005 Central limit theorem and convergence to stable laws in Mallows distance Bernoulli 11 829845 .

  • [7] Major, P. 1978 On the invariance principle for sums of independent and identically distributed random variables J. Multivariate Anal. 8 487517 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [8] Mallows, C. L. 1972 A note on asymptotic joint normality Annals of Math. Statistics 43 508515 .

  • [9] Mijnheer, J. 1986 On the rate of convergence to a stable limit law II Litovsk. Mat. Sb. 26 482487.

  • [10] Samorodnitsky, G., Taqqu, M. S. 2000 Stable Non-Gaussian Random Processes CRC Press.

  • [11] Tchen, A. H. 1980 Inequalities for distributions with given marginals Ann. of Probability 8 814827 .

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 2 0 0
Aug 2021 0 0 0
Sep 2021 5 0 0
Oct 2021 1 0 0
Nov 2021 0 0 0
Dec 2021 0 0 0