View More View Less
  • 1 Institute of Mathematics, Department of Integrative Biology, Universität für Bodenkultur Wien, Gregor Mendel-Straße 33, 1180 Vienna, Austria
Restricted access

Abstract

This paper provides estimates for exponential sums, combining classic tools of Van der Corput type with a deep result from the modern “discrete Hardy–Littlewood method”. As an application, an improved bound for the lattice point discrepancy of a large ellipsoid of rotation is deduced.

  • [1] Bombieri, E. and Iwaniec, H., On the order of , Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., 13 (1986), 449472.

  • [2] Graham, S. W., Kolesnik, G. 1991 Van der Corput’s method of exponential sums University Press Cambridge .

  • [3] Huxley, M. N. 1996 Area, Lattice Points, and Exponential Sums LMS Monographs 13 University Press Oxford.

  • [4] Huxley, M. N. 2003 Exponential sums and lattice points III Proc. London Math. Soc. 87 591609 .

  • [5] Huxley, M. N. 2005 Exponential sums and the Riemann zeta-function V Proc. London Math. Soc. 90 141 .

  • [6] Iwaniec, H. and Kowalski, E., Analytic Number Theory, AMS Coll. Publ. 53 (Providence, R.I., 2004).

  • [7] Iwaniec, H., Mozzochi, C. J. 1988 On the divisor and circle problems J. Number Theory 29 6093 .

  • [8] Krätzel, E. 1988 Lattice Points VEB Deutscher Verlag der Wissenschaften Berlin.

  • [9] Krätzel, E. 2000 Analytische Funktionen in der Zahlentheorie Teubner Wiesbaden.

  • [10] Krätzel, E., Nowak, W. G. 2008 The lattice discrepancy of bodies bounded by a rotating Lamé’s curve Monatsh. Math. 154 145156 .

  • [11] Müller, W., Nowak, W. G. 1988 Lattice points in domains |x|p+|y|pRp Arch. Math. (Basel) 51 5559.

  • [12] Nowak, W. G. 2008 The lattice point discrepancy of a torus in ℝ3 Acta Math. Hungar. 120 179192 .

  • [13] Nowak, W. G. 2009 On the lattice discrepancy of ellipsoids of rotation Uniform Dist. Th. 4 101114.

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 2 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0