Authors:
Santanu Bhunia Department of Mathematics, Jadavpur University, Kolkata 700032, India

Search for other papers by Santanu Bhunia in
Current site
Google Scholar
PubMed
Close
,
Pratulananda Das Department of Mathematics, F. C. College, Diamond Harbour, South 24 Prgs., Pin-743331 West Bengal, Indiae-mails: pratulananda@yahoo.co.in, sudipkmpal@yahoo.co.in

Search for other papers by Pratulananda Das in
Current site
Google Scholar
PubMed
Close
, and
Sudip Kumar Pal Department of Mathematics, F. C. College, Diamond Harbour, South 24 Prgs., Pin-743331 West Bengal, Indiae-mails: pratulananda@yahoo.co.in, sudipkmpal@yahoo.co.in

Search for other papers by Sudip Kumar Pal in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We first introduce a new notion called statistical convergence of order α and primarily show that it gives rise to a decreasing chain of closed linear subspaces of the space of all bounded real sequences with sup norm which never coincides with the class of convergent sequences and in fact their intersection properly contains the class of convergent sequences. We then show that the same method can be applied for double sequences also and introduce the notion of statistical convergence of order (α,β).

  • [1] Das, P., Malik, P., Savas, E. 2009 On statistical limit points of double sequences Appl. Math. Computation 215 10301034 .

  • [2] Das, P., Bhunia, S. 2009 Two valued measure and summability of double sequences Czechoslovak Math. J. 59 134 11411155 .

  • [3] Colac, R., Statistical convergence of order α, preprint.

  • [4] Connor, J. 1988 The statistical and strong p-Cesàro convergence of sequences Analysis 8 4763.

  • [5] Connor, J. 1989 On strong matrix summability with respect to a modulus and statistical convergence Canad. Math. Bull. 32 194198 .

  • [6] Connor, J. 1992 R type summability methods, Cauchy criterion, P-sets and statistical convergence Proc. Amer. Math. Soc. 115 319327.

    • Search Google Scholar
    • Export Citation
  • [7] Fast, H. 1951 Sur la convergence statistique Colloq. Math. 2 241244.

  • [8] Fridy, J. A. 1985 On statistical convergence Analysis 5 301313.

  • [9] Fridy, J. A. 1993 Statistical limit points Proc. Amer. Math. Soc. 118 11871192 .

  • [10] Kostyrko, P., Macaj, M., Šalát, T., Strauch, O. 2000 On statistical limit points Proc. Amer. Math. Soc. 120 26472654.

  • [11] Miller, H. I. 1995 A measure theoretical subsequence characterization of statistical convergence Trans. Amer. Math. Soc. 347 18111819 .

  • [12] Móricz, F. 2003 Statistical convergence of multiple sequences Arch. Math. (Basel) 81 8289.

  • [13] Mursaleen , Eedely, O. H. H. 2003 Statistical convergence of double sequences J. Math. Anal. Appl. 288 223231 .

  • [14] Pringsheim, A. 1900 Zur Theorie der zweifach unendlichen Zahlenfolgen Math. Ann. 53 289321 .

  • [15] Šalát, T. 1980 On statistically convergent sequences of real numbers Math. Slovaca 30 139150.

  • [16] Schoenberg, I. J. 1959 The integrability of certain functions and related summability methods Amer. Math. Monthly 66 361375 .

  • [17] Steinhaus, H. 1951 Sur la convergence ordinaire et la convergence asymptotique Colloq. Math. 2 7374.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 15 1 0
Jan 2024 20 2 0
Feb 2024 5 0 0
Mar 2024 3 2 0
Apr 2024 20 0 0
May 2024 23 0 0
Jun 2024 9 0 0